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Topography and Dynamics of Multidimensional Interatomic Potential Surfaces
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A statistically based characterization of the topography of a multidimensional potential surface
classifles not only local minima and saddles but entire basins containing many minima, and divides
separating basins and monotonic sequences of local minima within each basin. The data fold readily
into the formalisms of chemical kinetic isomerization theory and master equations to provide a
connection between that topography and the dynamics on the surface. This analysis permits an
interpretation of the glass-forming or "focusing" character of the surface. The method is illustrated
with a model system derived from the 19-atom Lennard-Jones cluster.

PACS numbers: 36.40.—c, 82.20.Db, 82.20.Wt

Clusters of tens or hundreds of atoms, for the most
part, have regular geometries in their low-energy forms,
e.g. , icosahedral if the interatomic forces are predomi-
nantly central and attractive with ranges of ordinary chemi-
cal bonds or van der Waals forces, and rocksaltlike if the
forces are those of typical ionic salts. However, even these
simple systems have potential surfaces in their ground elec-
tronic states that contain a great many local minima corre-
sponding to amorphous structures. This occurs with rare
gas clusters [1] and with alkali halides [2,3]. In the lat-
ter study, the (KC1)32 cluster exhibited amorphous, locally
stable structures outnumbering the rocksaltlike structures
by roughly 10':1. Nevertheless, a simulated cluster of
(KC1)32, initially liquid, whose energy is reduced at 5 x
10'2 K/s or slower, finds its way to a rocksaltlike struc-
ture. Only if the energy is removed at a cooling rate of
over 10'3 K/s can such clusters fall into the potential wells
of amorphous structures [3,4]. This apparent paradox is
much akin to the Levinthal paradox in protein structure: the
"wrong" structures so outnumber the "correct" or physio-
logically active structures of a protein that organisms could
not exist if random search were the way proteins folded to
their active structures. In fact crystal formation by ran-
dom search is probably more unlikely, statistically, than
protein folding, insofar as the constraints on the protein
maintenance of the integrity of the chemical bonds of the
polymer chain —rule out many structures available to the
freely moving atoms on their way to forming a solid.

This example illustrates one pressing issue in the gen-
eral problem of understanding how the multidimensional
potential surfaces of polyatomic molecules, clusters, and
nanoscale particles govern the dynamics and phaselike be-
havior of these systems. It is now practical to explore
completely a given potential surface for a system of 8 or
perhaps 10 atoms, in the sense of finding all the local min-
ima, all the important saddles linking those minima, and
the topology, the connectivity, of all the minima [5]. How-

ever, the number of geometrically distinct minima grows
approximately exponentially with the number of particles
N in the system [6,7], and the number of permutational
isomers of each of these increases roughly factorially with
N. Hence the complexity of potential surfaces increases
so rapidly with N that we are most unlikely to wish to cre-
ate catalogues of all the minima and important saddles for
clusters of more than about 15 atoms. For such systems we
must use statistical samples, not complete data sets, and we
need conceptual frames and questions appropriate to such
statistical data. Statistical methods have been used before
to study complex kinetics [8] but not with the emphasis
on the relation between topography and kinetics that is
invoked here.

This Letter presents a way to generate and manipulate
such a data set for a many-dimensional potential surface,
and to use it to analyze the dynamics on that surface. The
steps of the approach are as follows: (1) development,
from simulation and quenching, of a statistical sample of
minima and the saddles that connect them; (2) organiza-
tion of the data in the statistical sample through a hier-
archy of steps described below, to provide a pattern of
the topography of the surface; (3) estimation of the ma-
trix of well-to-well transition rates and incorporation of
those rates into a master equation which is then solved;
(4) analysis of the eigenvectors of the master equation
in terms of the pattern of the topography; and, finally, if
desired, (5) application of the master equation to address
controlled annealing of the system.

Our statistical database was generated by carrying out
constant-energy molecular dynamics of a liquidlike 19-
particle Lennard-Jones system, with regular quenching of
the energy [9] to sample the potential wells visited by the
system. The saddles were determined by a hybrid of the
eigenvector-following method [10,11] and the method of
slowest slides [12]. Our sample, so determined, consisted
of 299 different minima and 461 saddles that linked a pair
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of minima in the set of 299. Logarithmic extrapolation of
the data for Lennard-Jones clusters of 7 through 13 atoms
[7] imp ies —.l —0.5 && 10 geometrically distinct minima on
this sur ace. encef Hence we must be cautious in imputing
validity of our sample as a representation of the rea
particle rare gas cluster.

The second phase is the organization and analysis of
these data, beginning with listing and ordering the minima

The saddles are then cataloged by three
h saddlenumbers, the energies of the two minima that each sa e

links and the saddle energy. Next is the compiling and
ordering of all the minimum-saddle-minimum (min-sad-
min, for convenience) sets. We order these according to
the energy oh f the lower minimum. These triples can be
dis layed schematically as shown in the inset o ig.
this seemingly unintelligible tangle contains all the min-

energy minima on the left. (The 8 mmima in the set of
299 that were not linked to others were dropped from the
sample. ) These data show that the barrier heights of this
system on average increincrease monotonically with decreasing
energy of the local minima [13]. Hence the potentia
surface of Ar]9 is not strongly "focusing, " although it is
not necessarily strongly "antifocusing" either [14 .

In the triples of the inset of Fig. 1, many of the en: rgies
of minima on the right side, the upper wells of the min-
sad-min triples, appear also on the left, as the lower wells
of other min-sad-min triples. With the energy resolution
of our simulation, there are no degeneracies among the
minima, apar rt from permutational isomers; eac energy
@; defines a unique, locally stable structure. Hence a
minimum at an energy on the left can be taken as identica
with a minimum at the same energy on g . Ththe ri ht. This, in
turn, means we can unfold the triples into entire sequences
of min-sad-min-sad- ~ points as shown in ig. . n
the sequences o ig.f F 1 are only those that connect by

-0.034

E

-0.037

a monotonic sequence of minima to the global minimum
of the potential surface, which has the geometry o t e

le 245 of thedouble icosahedron. In our statistical samp e,I = 291 linked minima lie on some monotonic sequence
shown in this figure. These can be thought of as being
local minima in one large basin, which we call the
primary assn. o eb . N te that the minima, not the saddles,
define these sequences.

The saddle energies along the sequences of minima in
general do not form monotonic sequences although the
saddle heights generally increase along the downwar i-
rection of the sequences of minima [13]. This trend along
monotonic sequences may be a momore useful criterion for
the antifocusing character of the sur ace than a correla-
tion of barrier height with the energy of the upper well.

the global minimum do lie on other monotonic sequences.
These 46 all lie on sequences separated from the primary
basin by one saddle. We can immediately define the re-
gions containing these as secondary, y,and if the occurred,
tertiary, etc. asins.b The saddles which separate basins,
we call divides. A monotonic sequence of minima lead-
ing to the global minimum is then naturally called a pri-
mary monotonic sequence (PMS). Likewise a monotonic
sequence lying in a secondary basin is a secondary mono-
tonic sequence or SMS a monotonic sequence in a tertiary
basin is a tertiary monotonic sequence, etc. We call a di-
vide separating a primary basin from a secondary basin a
primary ivi e. id d Figure 2 shows a schematic representa-
tion o t ss way of h t describe a multidimensional potentia
surface.

mar basin"We have just used the expression "a primary asin"
rather than "the primary basin" deliberately. The reason
is not apparent in the example of the Ar]9 cluster that
is our principle vehicle here, but it is in the case of the
Kcl)32 cluster [2,3]. In that example, it proved useful

to distinguish not only the global minimum but all the
locally stable forms that have rocksalt structures, even
with a few defects. These constitute a class of low-energy
forms that define a set of basins that can be classified

basins becomes more and more relevant as the clusters

Tertiary
Secondary Divide

-0.04
5

step number
10

FIG. 1. Primary monotonic sequences in th pthe sam le database
for the Lennard-Jones 19-particle cluster; inset: all minimum-
saddle-minimum triples in the database.

Primary Basin Secondary Basin Tertiary Basin

FIG. 2. Schematic representation of prima y, yr secondar and
tertiary asins, anb, d monotonic sequences and divides.
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become larger, where interest is in whether the system
has found some fcc, hcp, icosahedral, or other type of
structure, rather than in whether it has reached the global
minimum. Even in the protein folding case [15,16], it
is useful for purposes of classification to allow systems
that have reached a state with the "right" physiological
activity to have structural differences in irrelevant parts
of the system. All such structures can be said to lie in
primary basins.

This categorization of the surface into basins and wells
within them allows us to study dynamics on the surface
without treating explicitly the rapid intrawell vibrations.
Instead, by using transition state theory in any of its forms,
we in effect average over these high-frequency modes and
concentrate on the interwell and interbasin transitions. To
implement this at the present stage, we have used the
RRKM method to estimate interwell transition probabili-
ties, a method that gives reliable rates for isomerization
of clusters [17]. It is now quite feasible to determine
the eigenvalues of the Hessian matrix at the minimum of
each well, either numerically or analytically [11,18], to use
those eigenvalues to carry out the RRKM rate calculations
in the harmonic approximation [17], and even to include
temperature-dependent anharmonic corrections [2,19].

Our matrix W,, (T) of transition probabilities, per unit
time, at temperature T, from well j' to well j has the form

l), i 4

W,, = g exp( 6@,' i /k~—T), (1)J2 h Q

where k& and h are, respectively, Boltzmann's and
ljjt 4

Planck's constants, 5@,," is the saddle height the system
must attain to pass from well j' to well j via the saddle

ljjt 4
denoted l,,i, and Q, i and Q, , i are, respectively, the par-
tition functions of the system in well j' and at the saddle

l,, The fundamental assumption of transition state
theory is the persistence of the system in the region of

ljjt 4
that saddle long enough for Q,", to be well defined.
If a harmonic approximation is made for the vibrations

l~jt 0
(with n degrees of freedom), then Q,," /Q, becomes

the vibrational frequencies or eigenvalues of the Hessian
matrices of the j'th well and the corresponding saddle l,,

With the matrix 6' in hand, we can readily construct
a master equation for the time evolution of the probabil-
ity distribution P(t) —= (PI(t), Pz(t), . . . , P (t))r, in which
P, (t) is the probability that the system be in well j at time
t. The equation is

JJ (2)
dt

where we have let w, , —= W,, —6,, P, W, i, to simplify
the notation. The time evolution of P (t), based on
some initial condition P (0), is the flow of the probability
distribution from its initial set of values toward the fully
relaxed equilibrium state at that temperature. We assume

that the entire phase space of our system is accessible
at the high energy of the molecular dynamics simulation,
where the cluster is clearly liquidlike, i.e., the energy
shell there is compact. This implies that the matrix ~ is
neither decomposable nor splitting, i.e., that it is not, nor
can it be put into block form. In this case there is only
one equilibrium state, the Boltzmann distribution P''i. As
a consequence of detailed balance, the master equation
(2) can be symmetrized by introducing a new dependent
variable u, = P, /QP', " [20]. The solution of (2) can then
be expanded in a complete set of eigenvectors u~ to the
symmetric matrix w, , = JP' ,"/P,'"w,,. :.

m

P, (t) = QP,
'" P u", e'"'u"„",„.(3)

k, k'=1

The largest eigenvalue of w is AI = 0 corresponding to
the equilibrium solution u, = QP,', the other eigenvalues
Ak are negative.

For a computational illustration of the development pre-
sented here, we chose to use an Einstein model for the
wells, and assume that they all have the same, single-
frequency spectra of intrawell vibrations. For this test case
we constructed the matrix ~ and found eigenvalues and
eigenvectors of the master equation for our 291-well po-
tential surface. The individual wells are identified accord-
ing to basin and could also be categorized by distance, in a
Hamming [21] sense, for example, or in the related sense
used by Bryngelson and Wolynes [15],from the minimum
point of its basin. Hence the results of this evaluation,
apart from yielding the zero eigenvalue and Boltzmann-
distribution eigenvector, show which eigenvectors corre-
spond to intrabasin fIows and which to interbasin Aows.
Moreover, the eigenvalues are essentially the inverses of
the time constants for these Rows. An eigenvector with
nonzero components in both primary and secondary basins
is associated with How between these basins. To see
whether the net How for that eigenvector is nonzero and
into or out of the primary basin, we sum the components
of that eigenvector corresponding to wells in the primary
basin only. The magnitude of this net jhow index deter-
mines how important that flow is, and the sign indicates
whether flow is into (negative) or out of (positive) the
primary basin.

The dark areas in Fig. 3 (right scale) show the distri-
butions of (nonzero) eigenvalues of the master equation,
normalized to the Einstein frequency vo, for the lowest
and highest temperatures we examined. The entire set
of eigenvalues is distributed over 7 orders of magnitude
at 30 K, over 5 orders at 60 K, over 4 at 120 K, and 3
at 300 K. This figure also shows the eigenvalues of the
eigenvectors dominating the interbasin Ilows (left scale),
corresponding to the 30 largest negative (lightly shaded
areas) and positive (solid lines) net liow indices, i.e., fiows
into and out of the primary basin. These are approximately
100-fold slower than the average of all Aows at 30 K, about
10-fold slower at 60 K, less than a power of 10 at 120 K,
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FIG. 3. Binned distributions of normalized eigenvalues Ajvo
of the master equation for 30 and 300 K. Areas shaded dark:
all nonzero eigenvalues (right scale); light areas and solid lines:
30 eigenvalues with the largest net flow into and out of the
primary basin, respectively (left scale).

and indistinguishable at 300 K [22]. The present analysis
provides more precise information on the relation between
topography and dynamics than did, for example, previous
studies of Ar~9 clusters, aimed at finding low-lying min-
ima [23] and at quenching and phase changes [14]. This
method shows that the physical basis for solid-liquid co-
existence in clusters is the time scale separation between
interbasin and intrabasin transitions (cf. Fig. 3, T = 30 K)
and the not-strongly-focusing character of the surface.

We have taken this analysis one step further, to use
the master equation to carry out two alternative optimized
cooling strategies to bring the system to a preselected mean
energy, and thereby to or near a preselected distribution of
structures —including, for example, to bring it with high
probability to the global minimum, or to a glass [13].

We have presented a procedure for studying topography
and dynamics on multidimensional potential surfaces. It
begins with a descriptive categorization of regions of
a given surface, based on the analysis of a statistical
sample of saddles and minima on that surface. The special
significance of this method is its practicability, as a result
of the efficient methods now available for locating minima
and saddles on multidimensional potentials. The method
then goes on to use transition state theory, at whatever level
of accuracy is desired, to compute a matrix of well-to-well
transition probabilities, and from this matrix, constructs a
master equation whose solutions reveal the intrabasin and
interbasin dynamics of the system moving on this surface.

Work in progress is exploring tests of the reliability
of the statistical sample, and of the infIuence of the
density of saddles, the distribution of saddle heights along
monotonic sequences of minima and the distribution of
monotonic sequences among the basins on the glass-
forming or focusing character of the surface.

R. S.B. acknowledges the hospitality of Professor
H. Baumgartel and the Freie Universitat Berlin, and
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