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Nonlinear Phenomena and Intermittency in Plasma Turbulence
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A new technique combining wavelet analysis and bispectral analysis has been developed. This
analysis tool permits the detection of structure in turbulent or chaotic data with time resolution, even
in the presence of a significant noise contribution. Application of this technique to data obtained in
fusion plasmas with Langmuir probes demonstrates its possibilities by detecting short-lived intermittent
nonlinear coupling. Its application in the field of chaos analysis is indicated.

PACS numbers: 52.35.Mw, 02.70.Hm, 52.35.Ra, 52.55.Hc

The purpose of this Letter is to introduce a new analy-
sis tool for turbulent or chaotic data to the physics
community. It allows detection and characterization of
short-lived structures in turbulence. The characterization
and understanding of strong turbulence is especially ur-

gent in the field of thermonuclear plasma physics, where
the so-called anomalous transport which deteriorates the
energy confinement due to turbulence is an important
phenomenon that is far from understood. Apart from the
difficulty of obtaining local measurements of turbulent
quantities in the hostile plasma environment, the main ob-
stacle to analysis is the high fractal dimension of between
5 and 9 of the turbulence [1]. Most traditional methods
for determining the nature of the turbulence rely to a large
degree on correlation techniques, probability distributions,
and spectral analyses, all involving long time averages [2].
Similar techniques supplemented with two-dimensional
visualization have been reported in [3]. The wavelet bico-
herence technique presented here detects phase coupling
while reducing time averages to a minimum, thus per-
mitting short-lived events, pulses, and intermittency to
be resolved. Its use is especially indicated for signals
contaminated with noise, although its application to data
from numeric models without noise has also been highly
successful.

Wavelet bicoherence is based on two existing tech-
niques: wavelet analysis and bispectral analysis.

Wavelet analysis is a relatively recent technique [4—
7] that has enjoyed increasing popularity in the field of
chaos and turbulence. Rather than giving time-averaged
estimates of the frequency contributions to a signal, as
are provided by the traditional Fourier decomposition,
the wavelet analysis decomposes a signal into wavelet
components that depend on both scale (which under some
conditions is equivalent to frequency) and time. The use
of wavelet analysis is recommended in the analysis of
data records containing pulses or short-lived events in
order to avoid averaging out these temporally localized
occurrences by examining large sections of the data
record.

Whereas the Fourier decomposition is based on the har-
monic wave e'"', the wavelet analysis is based on an ana-
lyzing ~avelet. Many different wavelets are documented

where a is the wavelet scale. This wavelet is a sinu-
soidal oscillation convoluted with a Gaussian having a
half-width of Dt = a (Fig. 1, top). The Fourier trans-
form of this wavelet (Fig. 1, bottom) shows a single
peak at a frequency ca = 2'/a with a FWHM value
of Aca = ca/4. At and Ata are the time and frequency
resolution of the wavelet and satisfy a Heisenberg re-
lation, b. that = ~/2. The present choice of wavelet
provides a reasonable compromise between time and
frequency resolution, although other choices may be
more suitable for different purposes. Because of the
single peak in the frequency spectrum, a wavelet of
scale a may be interpreted as representing a frequency
ca = 2'/a ~ b, ca/2.
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FIG. 1. Analyzing wavelet amplitude and Fourier transform
at scale a = 1. Similar plots for wavelets at other scales
can be obtained by means of the scaling transformations,
W, (t) = (1/~a)V(t/a) and W (cu) = ~a+(era), where 4' is
the Fourier transform of W.

in the literature [4—8]. In the present work, we have cho-
sen the following conceptually simple wavelet:

W, (t) = a '/ exp[i27rt/a —(t/a) /2],
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The wavelet transform of a function f(t) is given by

Wf(a, r) = f(t) P.(t —r) dt, (2)

which is a function of both scale and time. More
mathematical details of wavelet transforms can be found
in the cited literature. We mention that, apart from
the continuous wavelet transform as given by Eq. (2),
the discrete or fast wavelet transform also exists for
orthogonal wavelets [4,6,8]. The application of wavelets
to bispectral analysis requires, however, the use of the
continuous wavelet transform, and therefore we will not
expand any further on this point.

Bicoherence. —The other ingredient of the new tech-
nique presented here is bispectral analysis [2,9,10]. The
bicoherence is a measure of the amount of phase cou-
pling that occurs in a signal. Phase coupling is defined
to occur when two frequencies, ~] and co2, are simulta-
neously present in the signal(s) along with their sum (or
difference) frequencies, and the sum of the phases @ of
these frequency components remains constant. The bico-
herence measures this quantity, being a function of two
frequencies ~& and ~2, which is close to 1 when the signal
contains three frequencies co&, co2, and co that satisfy the
relation cut + ~2 = ~ and Pi + @2 = P + const; if no
such relation is satisfied, it is close to 0. In other words,
it measures the coupling strength between two frequen-
cies and their sum (and difference) frequencies. When
the turbulence exhibits structure of any kind whatsoever,
it may be expected that some phase coupling occurs. It
has been shown that the bicoherence is proportional to
the coupling constant in some quadratic wave-interaction

B (a), a2) = Wf (a, r)Wf(a~, r)Wf(a2, r) dr, (3)

where the integral is taken over a finite time interval
T: ~0~7. ~ ~~, and

1/a = 1/a) + 1/a2 (frequency sum rule) . (4)

The wavelet bispectrum measures the amount of phase
coupling in the interval T that occurs between wavelet
components of scale lengths a~, a2, and a of f(t) such that
the sum rule is satisfied. Since the scale lengths may be
interpreted as inverse frequencies, cu = 2rr/a, one may
interpret the wavelet bispectrum as the coupling between
wavelets of frequencies such that ~ = ~~ + cu2, within
the frequency resolution.

The squared wavelet bicoherence is the normalized
squared bispectrum,

turbulence models (e.g. , drift-wave turbulence in plasmas)
[2,11].

Traditionally the bicoherence has been evaluated using
the Fourier transform [2,9]. However, in many cases the
application of Fourier analysis to turbulent data is unsatis-
factory, because it presupposes the existence of modes in
the physical system with well-defined frequencies cu that
perdure in time. The chaotic systems under study are not
expected to possess many modes, if any. In addition, the
long time series that are necessary in the Fourier-based
bicoherence analysis in order to have both sufficient fre-
quency resolution and statistics [2] do not permit detection
of intermittent behavior and average out many interesting
turbulent effects.

We define the wavelet bispectrum as

[bw( )]2
I& (ai, ~p)l'

[f lWf(a~, r)wf(a2, r)l2 dr] [f lWf(a, r)l2 dr] '

which can attain values between 0 and 1.
The squared bicoherence [b (a&, a2)]2 is usually plotted

in the (coi, cu2) plane rather than the (ai, a2) plane for
ease of interpretation. There is no need to represent the
whole plane due to the symmetries in the definition and
the limitation set by the Nyquist frequency [9].

It is convenient to introduce the summed bicoherence,
which is defined as [b (a)]2 = g[b (a~, a2)] where the
sum is taken over all a& and az such that Eq. (4) is satis-
fied, and the total bicoherence (b ) = g[b (a)], where
the sum is taken over all a. Naturally, the numerical val-
ues of these quantities depend on the chosen calculation
grid and are therefore not fundamental ~ But they serve to
compare cases computed under the same numerical condi-
tions since they summarize the information conveniently,
as will be seen later.

Error estimation. —For digitally sampled signals, the
integrals in Eqs. (3) and (5) are replaced by summations
over N points. Each factor that is an integral over T
then suffers an error of 1/~N, so that the error in the
bicoherence is estimated by

A[b (s)), co2)]/b (co(, ~2) = 2/v N.

s [b (~), ~2)] = ~samp/2 1

min(1~ii, l~2l, l~& + ~21) N

Noise level. —The wavelet coefficients are not statisti-
cally independent, since we have chosen to use wavelets
that are not orthogonal. Each wavelet coefficient is
calculated by evaluating Eq. (2), integrating over the
range —~ ~ t & ~. Because of the periodicity a of the
wavelets of scale a (cf. Fig. 1), two statistically indepen-
dent estimates of the wavelet coefficients are separated by
a time a/2 or by a number of points M(a) = ace„p/4m.
(cu„pbeing the sampling frequency). Thus, the summa-
tion done in the evaluation of the bicoherence b (co~, cu2)

is not carried out over N independent estimates, but only
over N[max M(a)], where the maximum is taken over the
values of a that come into play for the evaluation of a spe-
cific value of the squared bicoherence. An upper bound
for the statistical noise level in b (co~, cuq) is, therefore,
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This is an upper bound because the statement that two
independent wavelet coefficient estimates are a time a/2
apart is a maximum estimate. Observe that at low fre-
quencies the statistical noise may dominate the bicoher-
ence, and a significant interpretation must limit itself to
(relatively) high frequencies. At higher frequencies, how-
ever, the noise level drops rapidly with N, and in this
sense the wavelet bicoherence may be considered a very
powerful noise filter for coherent signals.

Intermittency. —We have analyzed data taken with
Langmuir probes in the edge region of the Advanced
Toroidal Facility (ATF). This is an l = 2, M = 12
torsatron with major radius Ro = 2.10 m and minor
radius a = 0.27 m. The observed edge plasma tur-
bulence has been characterized using the techniques
described elsewhere [12j. The plasma is heated by
electron cyclotron resonant heating with a total power
of PECH = 200 kW, has an average electron density of
n, = (4 —6) X 10'2 cm ~, a stored energy Sz = 1 kJ,
and a magnetic field B = 1 T. Figure 2 shows results
for the measured Iloating potential (related to the electron

temperature T, ) at Z/Z, h„„=0.85 (Z,.h„„being the
location of the velocity shear layer). The signal, sampled
at 1 MHz with 10-bit resolution, was analyzed on the
time window from 1 to 15 ms by subdividing the signal
into 28 sections of 0.5 ms each. For each section (of
500 points) the wavelet bicoherence was calculated on
a frequency grid with a separation between grid points
of 10 kHz. The top graph of Fig. 2(a) shows the time
development of the total bicoherence. The noise level
according to Eq. (7) is indicated by the dashed line, and
the error according to Eq. (6) is indicated by the error
bars. The short bursts of coherency in this graph are an
indication of intermittency in the phase coupling processes
occurring in the turbulent plasma. Four sections of 0.5 ms
have been selected to illustrate this time development
in more detail. The lower part of Fig. 2(a) shows the
summed bicoherence for these sections, where again
the dashed line is the noise level and the error bars are
indicated. Figure 2(b) shows the bicoherence on the same
four sections. Observe the large amount of detail: The
strong bicoherence at low frequencies associated with
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horizontal and diagonal ridges is due to the coupling of
single modes to broadband spectra (this is especially clear
in the section 3—3.5 ms) which occurs throughout the
sequence, while the main contribution to the intermit-
tent behavior comes from the diffuse structures at high
frequencies.

Detection of structure in turbulence T.
—he possibility

of detecting structure in turbulence depends, among other
things, on the time resolution. We have analyzed Lang-
muir probe data of an ATF discharge for which the bi-
coherence calculated with the Fourier-based method [2]
exhibits a relatively low overall value. Figure 3(a) shows
results for the measured fioating potential at Z/Z, .h„„=
0.9. A data record running from 1 to 16 ms has been ana-
lyzed. Figure 3(a) shows the summed bicoherence graphs
for both a long (1 to 16 ms) and a short (10 to 10.5 ms)
time window and their corresponding noise levels. The
long time average produces a very low bicoherence level
(although still significantly above noise level), because the
turbulent structures that are present are not constant in
time. The short time average, however, shows a rather
strong bicoherence, indicating the detection of a turbu-
lent structure around t = 10 ms. The two peaks at 60
and 120 kHz indicate a structure of a particular size. Fig-
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FIG. 3. (a) Summed bicoherence for two time windows, 1.0
to 16.0 and 10.0 to 10.5 ms. The noise level for both cases
is indicated by the dashed lines. The two peaks at 60 and
120 kHz in the short time section indicate the detection of
structure in the turbulence. (b) Bicoherence graphs for the
time windows 1.0 to 16.0 and 10.0 to 10.5 ms. A structure is
clearly visible in the latter.

ure 3(b) shows the two-dimensional bicoherence graphs
for both time intervals. Indeed, a clear structure is visible
in the short interval.

Conclusions. —In this Letter we have introduced a
new technique for the analysis of turbulent data. The
traditional bicoherence based on Fourier analysis detects
phase coupling between oscillations. The new wavelet
bicoherence adds time resolution to this technique without
sacrificing the interpretation in terms of frequencies by
selecting a suitable analyzing wavelet. This permits the
resolution of structure in turbulent or chaotic data that
would otherwise go unnoticed. In particular, the detection
of intermittency and structure has been demonstrated in
turbulent plasmas. The characterization of turbulence or
chaos by means of the wavelet bicoherence may provide
a link between theory and experiment that allows the
exploration of the dynamics of chaos with higher fractal
dimensions than has been possible hitherto.
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