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Vacuum Structure and Spectrum of N = 2 Supersymmetric SU(n) Gauge Theory
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We present an exact description of the metric on the moduli space of vacua and the spectrum of
massive states for four dimensional N = 2 supersymmetric SU(n) gauge theories. The moduli space of
quantum vacua is identified with the moduli space of a special set of genus n —1 hyperelliptic Riemann
surfaces.
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Recently Seiberg and Witten [1] obtained exact expres-
sions for the metric on moduli space and dyon spectrum
of N = 2 supersymmetric SU(2) gauge theory using a ver-
sion of Olive-Montonen duality [2]. In this Letter we use
this approach to obtain similar information for the N = 2
supersymmetric SU(n) gauge theory.

The N = 2 Yang-Mills theory involves a single chiral
N = 2 superfield in the adjoint which decomposes into
an N = 1 vector multiplet W and chiral multiplet 4.
W includes the gauge field strength F~, as well as
the Weyl gaugino, while 4 includes a Weyl fermion
and a complex scalar P. Classically there is an (n—
1)-complex-dimensional moduli space of IIat directions.
Any vacuum expectation value (VEV) for P can be
rotated by a gauge transformation to lie in the Cartan
subalgebra of SU(n), and generically breaks SU(n) ~
U(1)" '. Denote by 4; and W; the components of the
chiral and vector superfields in the Cartan subalgebra
with respect to the same basis. The low-energy effective
action S —Im(f d20 d20 4z& 4; + 2 f d 0 r" W, W, ) is
derived from a single holomorphic function +(4k) since
4&o = Bg/B&b;, and r'I = B2g/ii@; c14, [3]. The real
and imaginary parts of the lowest component of ~'~ are the
effective 0 angles and coupling constants of the theory,
respectively.

Normalize the W; fields so that the charges of fields
in the fundamental of SU(n) form a unit cubic lattice,
implying that the allowed set of electric charges n,' are
all the integers. Denoting the magnetic charges of any
monopoles or dyons by 2~n;, the Dirac quantization
condition requires the n; to lie in the dual lattice,
implying that the n; are also integers. Then the effective
action is left invariant by duality transformations [1,4]
which acts on the fields by @ M @, W M W
for M E Sp(2n —2, Z), where & = (Co, @;), 'W =
(Wo, W;), and Wo are the dual U(1) field strengths. The
structure of the N = 2 supersymmetry algebra implies [5]
dyons of magnetic and electric charge 'n = (n;, n,') have
mass M = ~2('a . n), where 'a = (ao, a;) are the VEVs
of the scalar component of the chiral superfield and its
dual: a; = (P;) and aD = (Po).

As discussed in Ref. [1], analyticity of the superpoten-
tial +, positivity of the Kahler metric Imr, and the form

of the superpotential at weak coupling imply that there
must be singularities in the moduli space around which
the theory has nontrivial monodromies in Sp(2n —2, Z).

Classical moduli space.—We adopt the convention
that upper case indices I, J, K, . . . run from 1 to n and
lower case indices i, j, k, . . . run from 1 to n —1. Use a
basis [H', Etj (I ) J)) for the generators of the U(n) Lie
algebra where the n X n matrices [H']~tt = 6~6tt span the
Cartan subalgebra. Then the SU(n) vector superfield W =
WI H + WfJE will satisfy the tracelessness condition
g, Wt = 0. We everywhere substitute for W„in terms of
the W s using the tracelessness constraint, thus choosing
the W s as a basis of the Cartan subalgebra of SU(n) and
ensuring that the charges of fields in the fundamental of
SU(n) are integers.

Rotate (P) into the Cartan subalgebra of SU(n): (P) =
aIH', where the aI satisfy the tracelessness constraint
g, at = 0. If we denote the space of independent com-
plex at's by 2„,then the classical moduli space is 94„=
2„/S„whereS„is the Weyl group of SU(n) which acts by
permuting the aI's. The Higgs mechanism gives the WIJ
boson masses proportional to ~at —aj ~. The Weyl group
S„does not act freely on 2„:a submanifold of partial
symmetry breaking to SU(m) is fixed by S ~ S„,sinceI of the at's are equal there. Classically 3Vt„has singu-
larities along these submanifolds since extra WIJ bosons
become massless there. A global U(1)z symmetry of the
SU(n) theory is broken down to Z4„by anomalies. Since
the scalar field P has charge 2 under this symmetry, only
a Z2„actsnontrivially on 94„.

A basis of gauge-invariant coordinates covering W, at
weak coupling are given by u = (Tr(@ )) = g, at, for
n = 2, . . . , n. A more convenient set of gauge-invariant
coordinates is given classically by the elementary sym-
metric polynomials in the aI's,

s =(—) g at, at, a =l, . . . , n.

These symmetric coordinates can be expressed as poly-
nomials in terms of the u 's generated by Newton's for-
mula rs„+g" os„u = 0, for r = 1, 2, 3, . . . , where
so ———1, uo =—0, and s& = u] = 0 by the tracelessness
constraint.
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The SU(n) curve .—The couplings r transform under
Sp(2n —2, Z) and Imv must be positive definite for the
theory to be unitary. The period matrix of a genus
n —1 Riemann surface has precisely these properties, so
it is natural to guess [1] that the moduli space of the
SU(n) theory be embedded in the moduli space of the
Riemann surface. A simple set of Riemann surfaces are
the hyperelliptic ones [6], described by the complex curve

y = gz', (x —eq), which is the double-sheeted cover
of the Riemann sphere branched at 2n points e~. The
SU(n) curve should also have a Zz„symmetry, reflecting
the U(1)~ symmetry broken by instantons in the SU(n)
theory. This symmetry fits naturally with the hyperelliptic
surfaces if we assign R. charge 1 to x and n to y.

We now assume, following [7], that the coefficients of
the polynomial in x defining the SU(n) curve are them-
selves polynomials in the gauge-invariant coordinates s
(or u ) and A2', where A„is the renormalization scale of
the SU(n) theory. The power of A2" ensures that it has
the quantum numbers of a one-instanton amplitude.

In the weak coupling limit there are nontrivial mono-
dromies around the regions of moduli space where extra
gauge symmetries are restored, corresponding to the
submanifolds where a pair or more of the aI take the
same values. So, as A„~0, the SU(n) curve should be
singular along these submanifolds. A curve is singular
whenever a pair or more of its branch points eq co-
incide. A polynomial in x which has the required property
is F(x) = g,",(x —al). As we will shortly see, there is
also a monodromy of the SU(n) theory at weak coupling
which does not correspond to any coincidence of the aI's.
Thus, in the weak coupling limit the SU(n) curve should
be singular for all values of the aI's. This can be achieved
by simply squaring the polynomial F(x), so that all its
zeros are doubled. Also, it then has the right degree in x
to desribe a hyperelliptic curve. There is then only one
way to add in instanton contributions (terms dependent
on A„)consistent with our assignment of the R charges:
y = F (x) —A2". The coefficients of the polynomial
F(x) are precisely the elementary symmetric functions
s of the al's (1). We make the assumption that the
s remain good global coordinates on the SU(n) moduli
space even at strong coupling. Then the proposed SU(n)
curve is

matching implies A„'—a A„] . Shifting x to x + a
2(n —])

and taking the limit a ~ ~ while leaving A, ] fixed sends
two branch points to infinity. Rescaling y by (x + na)
we recover the curve (2) again, but now for SU(n —1)
instead of SU(n). Thus the SU(n) curve at weak coupling
automatically contains all SU(n —1) monodromies,
allowing us to proceed by induction in n.

The SU(2) curve can be shown to be equivalent to
the SU(2) curve found in [7] by a fractional linear
transformation on the x variable, since the automorphisms
of the Riemann sphere allow us to fix three of the branch
points arbitrarily by an SL(2, L) transformation. Along
an SU(2) direction at weak coupling the SU(3) curve
degenerates to the SU(2) curve, and so gives the correct
monodromies. The SU(3) curve has another singularity
at weak coupling corresponding to the limit where all the
aI's scale together by some large factor. If the special
SU(3) monodromy around this singularity agrees with the
answer calculated from perturbation theory, then all the
weak coupling monodromies of SU(3) will have been
checked, and the induction can proceed to SU(4), etc.
In general, we will need to compute just one .special
monodromy for each SU(n) curve.

A convenient curve along which to measure this mono-
dromy is

al(t) = tu'+'a, 0 ~ t ~ 1, (3)

where ~a~ && A„and cu = e~ '~". This path traverses
a large circle in the s„complex plane along which all
the other s 's vanish. In this plane the SU(n) curve
(2) factorizes for ~s„~ && A"„asY2 = PJ(x —cu s„'~"[1 +
s„'A"„])(x —co s„'~"[1 —s„'A„"]).The branch points are
arranged in n pairs with a pair at each nth root of unity
times s„'". As s„~e 's„,these pairs are rotated into
one another in a counter-clockwise sense, and each pair
also revolves once about its common center in a clockwise
sense.

Choose cuts and a standard basis for the independent
cycles on the SU(n) surface as shown for SU(3) in Fig. 1.
Thus, y; are independent nonintersecting cycles, similarly
for yo, and their intersection form is (yo, y, ) = 6,'. Note

g s.x"-
o. =0

p 2fl
n (2)

The remainder of this Letter describes various consis-
tency checks of this curve. For brevity's sake, we check
only properties that depend on the conjugacy class of the
monodromies in Sp(2n —2, Z).

6'eak coupling monodromies. —The first check we
perform is to show that (2) has all the right mono-
dromies at weak coupling. SU(n) is strongly broken
down to SU(n —1), when a; —a and a, —(1 —n)a,
where ~a~ && A„, and the usual renormalization group

FIG. 1. Contours for a basis of cycles for the SU(3) curve.
The thick wavy lines represent the cuts, solid contours are on
the first sheet, and dotted ones are on the second.
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that y„is not independent of the y s: a simple contour
deformation shows that Pl yI = O.

As s, e2 's„the yI are dragged along with the
cuts so that y; y;+~ =—P; y~, where P; = 6;+~ —6,"+&

is a representation of the ~ = (1, . . . , n) permutation. It
then follows from the defining properties of symplectic
matrices that the monodromy y ~ M ~ y in Sp(2n—
2, Z) of 'y = (yo, y;) can be written as

where P is the permutation matrix found above, and N is
some symmetric matrix which we wish to determine. If
NP = 'P 'N, the two matrices in Eq. (4) commute, and
M" = (0",) since P" = 1. But M" is easy to compute:
as s ~ e '"s„,the y; cycles are simply dragged back
to themselves and similarly for the yD cycles except
that their ends get wound n times (in a clockwise sense)
around each cut that they pass through. As illustrated in
Fig. 2, each such winding can be deformed to give two of
the associated y s. Keeping track of the signs, one finds

yii —2n(y; —y„)= yo + nN'~y~, where N'
—2(6" + 1). Since this matrix satisfies NP = 'P 'N, it
follows tllat it ls, lil fact, tile lllatllx N of Eq. (4).

Special monodromies in perturbation theory. —By
asymptotic freedom, SU(n) is weakly coupled if it is
broken at a large scale so that all the ~al —aj~ && A, .
Writing the effective action as S —f r' WI WJ, the
one-loop result for the running of the couplings is 7-'

(i/~) (6' P~ Inall; —lnaIJ), where aIJ =—aI —aj. The
tracelessness constraint QI WI = 0 implies 7 ' = 7'
~'" —7-"J + 7-'". It follows from the definition of ~'j
that aD = r"a, (only in perturbation theory).

In general, there is a nontrivial monodromy in the
aD along any path in W, at weak coupling whose
lift to 2„connects a point with its image under the
action of a nontrivial permutation ~ E 5„.The different
possible choices of permutation ~ reflect the pattern of
symmetry breaking of SU(n) at high energies, except for
7r = (1, . . . , ri), which does not correspond to any special
symmetry breaking pattern. The associated monodromy
is the one special to SU(n).

Along the path (3) realizing this monodromy, the a s

transform as a; ~ P,'a, , where P is the same permuta-
tion found above from the curve. The logarithms in the
one loop expression for ~" contribute a shift in its mon-
odromy, 7'~ ~" + N", where N is easily computed to
be equal to the matrix N found above from the curve. The
ao then transform as aD ~ 7."P, aq + W"Pj aI, . From
the defining properties of symplectic matrices it follows

FIG. 2. A contour wound once around a cut is deformed into
the sum of three contours.

that ~P= 'P ' ~, and so the monodromy of the scalar
VEVs 'a = (az, a, ) indeed agrees with the monodromy
(4) computed from the SU(n) curve. This completes our
check that the monodromies of the curve (2) agree with all
the monodromies of the SU(n) theory at weak coupling.

Metric on moduli space and dyon spectrum. —The
identification of the metric and spectrum —that is to say,
a; and a& as functions of the moduli s closely parallels
the discussion of Ref. [I]. Choosing a basis of cycles
(yD, y;) of the SU(n) curve with the canonical intersection
form (yD, y, ) = &J', we identify a; and ao as sections of a
flat Sp(2n —2, Z) bundle over moduli space given by

a;= A, a~= A,

where A is some meromorphic one-form on the curve with
no residues. There is a (2n —2)-dimensional space of
such forms spanned by the n —1 holomorphic one-forms
A; = (x' '/y) dx, and the n —1 meromorphic one-forms
x'A, . The one-form A defining our solution can be written
as a linear combination of these basis one-forms (with
coefficients that can depend on the s and A„)up to a
possible total derivative.

Since the period matrix of the Riemann surface defined
by the SU(n) curve has a positive definite imaginary part,
transforms in the same way as r' under Sp(2n —2, Z),
and has the same monodromies as ~'~ does, it follows that
they should be identified. Since the period matrix and
the couplings are defined by r"(f A ) = f A and

r'~(Raj/&3s ) = (Bao/Bs ), respectively, it follows that
Aa;/Bs = P A and Ban/Rs = f A for some basis

of holomorphic one-forms. Equation (5) and these
identifications imply a set of differential equations for A,

which can be solved to find [8]("
A ~

~ g(n —n)s x" (6))y
since BA/Bs = —x" (dx)/y + d(x'+' /y). The over-
all constant normalization of A can be determined only by
making a choice of basis cycles and matching to perturba-
tion theory.

Strong coupling monodromies. —The singularities of
the curve (2) occur where a pair or more of the branch
points coincide, and correspond to a dyon in the spectrum
becoming massless. Near these points in moduli space the
low-energy U(1) that couples to the massless dyon flows
to zero coupling. Thus, there will be a dual description of
the physics near the singularities which is weakly coupled,
and so can be used to check these limits of the curve (2)
as well.

Consider the case where m dyons become massless at
a point P in M„.The low-energy theory is by definition
local, so all m massless dyons must be mutually local, im-
plying their charge vectors n are symplectically orthog-
onal: 'n' - I . n" = 0 for all a, b = &, . . . , m, where I is
the symplectic form ( i 0). This can only be satisfied for
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m ~ n —1 linearly independent vectors since there ex-
ists a symplectic transformation to dual fields where each
dyon is described as an electron charged with respect to
only one dual low-energy U(1). In this dual description
m independent electrons are becoming massless near P.
These m electrons are massless along intersecting hyper-
surfaces given by the vanishing of m dual scalar VEVs:
a, =0.

Along these hypersurfaces the effective action is singu-
lar, leading to nontrivial monodromies for paths looping
around them. The one-loop effective couplings near P
are r'i = (—i/2')B'J(n, ')~ ln(n,'a;), where n,' denotes the
charge of the ith electron, implying the monodromy M;
around the a; = 0 hypersurface to be

lt

where e;; is a matrix of zeros except for a 1 in the ith
position along the diagonal. A strong coupling test of
the curve (2) is that its monodromies around intersecting
singular submanifolds all be conjugate to the above M;
monodromies corresponding to mutually local dyons.

The singular submanifolds of the SU(3) curve are given
by the vanishing of the discriminant 5 of the polynomial
(2) defining the curve. Possible intersection points of
the singular submanifold 5 = 0 are at its singular points.
There are five such points: the Z3-symmetric triplet of
points 4s2 = —27A and s3 = 0, and the Z2 doublet
s2 = 0 and s3 = A . The triplet corresponds to true
intersection points. At the Z2 points, however, 6 = 0
describes a branch point of a single submanifold, instead
of the intersection point of two submanifolds.

We compute the monodromies around the intersecting
singular submanifolds at a Z3 point by first expanding
the SU(3) curve in local coordinates around one such
point, where it is found that two pairs of branch points
coincide. Choose a basis of y, cycles to encircle each
pair of branch points, and the y&'s in the canonical way.
The resulting monodromies computed by dragging and
deforming contours are then found to be of the form (7)
with n,' = n, = 1. This confirms that there are indeed
two different mutually local dyons becoming massless
along the two intersecting submanifolds at the Z3 points.
Furthermore, their charges are consistent with the semi-
classically stable dyon charges in the SU(2) limit. This
suggests that, as in the SU(2) case, the spectrum of stable

dyon charges remains the semiclassical one all the way
down to these strong-coupling singularities.

As a final check of the SU(3) curve, we note that the Zq
intersection points imply the known N = I SU(3) vacuum
structure. Following Ref. [1], add to the microscopic
N = 2 theory a mass term for the N = 1 chiral superfield

which breaks N = 2 to N = 1. Going to the dual
(weakly coupled) description of the physics near a point
in the moduli space of the SU(n) theory where n —1

dyons are massless, and minimizing the nonperturbative
[9] effective superpotential shows that the N = 2 f]at
directions are lifted and only the point where all n —1

dyons are massless remains an N = 1 vacuum. The three
Z3 singularity intersection points of the SU(3) curve found
above are just such points, and happily they correspond to
the three N = I SU(3) vacua related by a spontaneously
broken Z3. Finding the strong coupling singularities
for the SU(n) curve becomes increasingly difficult for
higher n.
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Note added. —Related results for the SU(3) theory
appeared [10] after this work was completed.
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