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We propose a string theory model which explains several features of two-dimensional Yang-Mills
theory. Folds are suppressed. This in turn leads to the empty theory in flat target spaces. The Nambu-
Goto action appears in the usual way. The model naturally splits into two (chiral) sectors: orientation
preserving maps and orientation reversing maps. Moreover, it has a straightforward extension to three-
and four-dimensional space-times.

PACS numbers: 11.25.Sq, 11.10.Kk

It is strongly believed that the dynamics of gauge fields
can be described in terms of a string theory. The idea
was supported by the lattice strong coupling expansion [1)
and the I/N, expansion [2]. The latter applied in two-
dimensional (2D) models gave several well-established
relations between QCD in two dimensions (or Yang-Mills
theory in two dimensions) and a string theory [3,4]. It
appeared that the crucial role is played by the no-fold
condition, which strongly restricts the set of the surface-
to-surface maps defining the string theory. Moreover,
the results of [3,4] indicate that the proper string action
should contain the Nambu-Goto term. It is well known
that the Nambu-Goto term alone cannot give the correct
picture because the appropriate functional integral cannot
suppress folds.

In this Letter we propose a solution to this problem.
We shall supplement the Nambu-Goto action by a topo-
logical term which will lead to the cancellation of folds.
The topological term is well defined in a target space-
time of dimension four so we shall introduce two addi-
tional (hereafter called vertical) variables with values in
R . They will enter only the topological term —in this
sense they will not have any dynamics. Functional inte-
gration over vertical variables will lead to the nonpertur-
bative cancellation of folds. We shall show that the model
has null partition functions and null transition amplitudes
for microscopic states (infinitesimal punctures) for strings
propagating in the Oat 2D target space-time. At the end
of this paper we shall comment on implications of these
results for the physical, 4D string model of gauge fields.

The topological term we are going to consider is the
self-intersection number (I) [5] of a surface immersed
in the extended 4D space-time. It was previously con-
sidered in [6—9]. It is a topological invariant, in some
respects, similar to FF of Yang-Mills theory in four di-
mensions: For example, the string analog of the U~(1)
anomaly is proportional to I [7,8].

We depart from the Polyakov picture of string theory
[10] in the sense that no dependence on the elementary
world-sheet metric is involved —the only world-sheet
metric we use is the induced one. It is worth noting that

the area-preserving diffeomorphism plays no role in the
whole construction.

The string theory functional integral for 2D targets
is a sum over surface-to-surface maps X ~ M, where
X denotes the string world sheet and M the 2D target
space-time. It is known that generic surface-to-surface
maps contain singularities which are folds and cusps
[11]. Hereafter we are going to consider only such maps.
Folds form a submanifold of X for which one eigenvalue
of the induced metric g, b = 0 X DbX vanishes. We
introduce two additional, (vertical) world-sheet fields:
(X', X ) ~ R and consider all lifts of the (X', X2) map,
i.e., maps of the form (X', X2, X3, X ) E M X R2, where
fields (X3,X ) take arbitrary values. Generically, a lift
is an immersion. It means that the image of g has two
linearly independent tangent vectors so, e.g. , the induced
metric is nondegenerate. Folds are places where the
surface-to-surface map ceases to be an immersion.

The proposed string action is

S[X] = p, d o-~g + iIII[X], (1)
where E is the self-intersection number of the surface
immersed in the 4D space. For topologically trivia1 target
spaces it equals

1I = — d g~gg'" B,t~, (3bt~', (2)16~
where X = X(se) defines the immersion and t„,= e'b
8 X"BbX'/~g The vertical .coordinates enter the action
only through I.

The action (1) is invariant under arbitrary v-regular
homotopy of vertical fields: X"(g) = ep(se) (p, = 3, 4)
[5]. A v-regular homotopy is a homotopy (i.e. , just
mentioned shift symmetry) which is an immersion for
each homotopy parameter.

In the following, we are going to classify topological
sectors of the model. We say that two immersions are
in the same topological sector if they can be connected
by a v-regular homotopy. Consider a 2D surface with
folds and its lift into 4D space (X', . . . , X~). The claim is
that to any fold [in (X', X2) space] corresponds infinitely
many topologically inequivalent lifts characterized by a
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set of integer numbers. The latter are assigned to folds
and are invariant under v-regular homotopies. A sum of
these numbers gives the self-intersection number I H Z.
We stress again that all lifts have the same dependence on
X', X~, e.g. , the same area [the same value of the Nambu-
Goto part of the action (1)].

Consider a map of a sphere S2 on R~ with one fold
(see Fig. 1). Thus the map is 2 to 1 everywhere

except at the fold S& itself. The fold is topologically
a circle S'. One can always choose one nonvanishing,
continuous tangent vector along the fold. It is the
nonzero eigenvalue of the induced metric. Lifts of the
fold must have nondegenerate 2D tangent space. Hence
another vector tangent to the immersed surface has to
be in the (X3, X4) plane. All the possible lifts belong to
homotopy classes of the maps S' S', i.e., ~&(S') = Z.
The first S' is the fold; the second S' represents nonzero
tangents in the (X~, X ) plane. If o. parametrize the
fold then for given lift (X (o.), X (o.)) the element of
7r&(S') is given by the rotation number of this tangent:

f = (1/2') f do (a X' O' X' —a X O' X')/[(a X')' +
(8 X4)2]. The integer f is invariant under the v-regular
homotopy and is directly related to the self-intersection
number I of the lifted configuration. We can see it if we
notice that both numbers are additive under gluing. By
gluing we mean a procedure of cutting small disks in both
immersions and then connecting them by a tube. Let us
associate a pair (f, I) of numbers to a lift. If we glue it
with the (f', I') lift, we obtain the (f + f', I + I') lift.
Thus gluing f ~ copies of the (—1, —Il) lift with the (f1, 1)
lift we get the (0, 1 —f~l~) lift. But f = 0 corresponds
to I = 0, because the above simple map with f = 0 can
be lifted to an immersion in just 3D space instead of
4D space. Thus 1 = f~I~, so I~ = f~ = ~1 (the sign is
undetermined). The same reasoning can be repeated for
more complicated folds with several disconnected com-
ponents and cusps. One assigns the numbers f; H vr~(S')
to the ith connected component of the set of folds. The
numbers (f;i are invariant under the v —regular homotopy.
The self-intersection number is then I[f] = gr„~d, +. f;
One can see it gluing lifts of the just considered map with
one fold to lifts of the other folds.

Below we give a simple proof of the following state-
ment. v regular homoto-py classes of lifts (i e , topolog. .

~X1 rZ)X2 —s[x] P iol[f] (3)

The sum over f, 's can be performed independently for
each i because I[f] = X,t, ~d,.

~ f; For one fo.ld we get

(4)

Thus all folded configurations vanish from the path
integral for nonzero 0. Of course, 0 = ~ is the preferred
value because then the model does not break parity.

Maps contributing to the vacuum-to-vacuum amplitude
of the closed string necessarily have folds for the target
space R~. According to the above discussion the ampli-
tude vanishes. This also holds for any correlation function
of any finite set of local operators. Thus the final conclu-
sion of this part of the paper is that the model (1) is trivial
for the R~ space-time.

In the end let us discuss shortly the Nambu-Goto action
for maps without folds which may occur for topologically
nontrivial space-times [in this case one can distinguish
two classes of maps: orientation preserving (+) and
orientation reversing maps (—)]:

ical sectors of the model) are in one to-on-e correspon
dence with sets (f;).

Let us consider two lifts (X', X2, Xl~, X~ ) and
(X', X,X2, Xq). If they are v-regularly homotopic
then they define the same set (f;), because (f;) is invari-
ant under any v-regular homotopy. On the other hand, let
us assume that two immersions are characterized by the
same set (f;j. Let S~ denote folds of the map (X', X~).
The assumption implies that tangents to both lifts at Si
are equal up to a v-regular homotopy —here it is a local
rotation of the tangents. Moreover, one can shift the lifts
in such a way that they will be equal [(X|,X&) = (Xq, Xq)]
at S&. Hence both lifts are v-regularly homotopic in an
infinitesimally small neighborhood of S~ (up to second
power of an infinitesimal quantity). Away from the folds
the map (X', X2) is an immersion. In this case the shift
parameters e&($) (p, = 3, 4) can be arbitrary. Thus both
lifts are v-regularly homotopic everywhere.

Now we go to the string theory. We want to show
that the originally folded configurations (X', X ) will
cancel out from the partition function. Fixing the shift
symmetry in such a way that the gauge slice picks only
one representant (or at least an equal number of them) of
each topological sector we get the following expression
for the functional integral:

1
d o.~g= ~—

2
d n-e"' e'"D,X~ BbX',

p, , v = 1, 2. (5)

FIG. ] . A mgp Of S On R ~ith One fold SI .

The sign is chosen in such a way that the right hand side
is positive. In this way the Nambu-Goto action has been
split into two (chiral) sectors of [4]. To some extent both
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sectors can be considered separately. In fact, this kind of
theory has been considered recently in [12] yielding very
interesting results.

Because the vertical degrees of freedom have no
dynamics, one can view (I) as a compactification of
a 4D string. In usual compactification schemes the
vertical variables assume values in a compact 2D surface
(e.g. , torus). We believe that the cancellation of folds
holds also in this case although we have not proved it.
We must also stress that we can say very little about
nongeneric surface-to-surface maps. Various subsets of
these maps may be relevant for the description of various
2D gauge theories [13,14]. This will be considered in a
separate publication. It is clear that the model (1) has
straightforward extensions to three- and four-dimensional
space-times; one simply needs to make the additional
dimensions dynamical, i.e., add them to the Nambu-Goto
action. Higher-dimensional string models may require
more terms (e.g. , the extrinsic curvature term [9)) which
are ill defined or just do not exist for 2D space-times.

Concluding, we want to stress that arguments given in
this paper show that the self-intersection number should
play a major role in any 4D string theory of gauge fields.
It is highly plausible that it will cancel all degenerate
surface configurations which contribute to other string
theories, e.g. , the Polyakov string [10].
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