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Universal Fluctuations in Spectra of the Lattice Dirac Operator
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Recently, Kalkreuter obtained the complete Dirac spectrum for an SU(2) lattice gauge theory. We
performed a statistical analysis of his data and found that the eigenvalue correlations can be described
by the Gaussian symplectic ensemble. Long range fluctuations are strongly suppressed: The variance
of a sequence of levels containing n eigenvalues on average is given by (1/2~') (inn + const). Our
findings are in agreement with the antiunitary symmetry of the lattice Dirac operator for N, = 2 with
staggered fermions. For N, = 3 we predict that the eigenvalue correlations are given by the Gaussian
unitary ensemble.

PACS numbers: 11.15.Ha, 05.45.+b, 12.38.Gc

The QCD Dirac operator is of fundamental impor-
tance for the calculation of the physical properties of
QCD. Knowledge of its eigenvalues and eigenfunctions
determines the propagator, a necessary ingredient for the
calculation of hadronic correlation functions. In this Letter
we will focus on the eigenvalues of the Dirac operator and
isolate some universal properties that can be understood
from its symmetries only. One such example is already
known: The eigenvalues near zero satisfy sum rules [1]
with a generating function given by random matrix theo-
ries with global symmetries of QCD [2]. This led us to
the conjecture that the fluctuations of the eigenvalues no
more than a few level spacings away from zero, over the
ensemble of gauge field configurations, are given by uni-
versal functions that can be obtained from a much simpler
random matrix theory. This raises the question whether
the eigenvalues in the bulk of the spectrum show such uni-
versal characteristics as well.

Recently, in a ground breaking work, Kalkreuter [3) suc-
ceeded to compute the complete spectrum of the Dirac op-
erator on a reasonably large lattice (12 ). His results were
in complete agreement with an analytical sum rule adding
greatly to our confidence in the accuracy of his results.
Long level sequences have been analyzed before in atomic
and nuclear physics and for systems with only a few de-
grees of freedom [4,5]. Generically, it was found that if
the system is classically chaotic, the correlations between
eigenvalues with the same exact quantum numbers are
given by the Gaussian random matrix ensembles in spite of
the fact that their average eigenvalue density is different.

In this Letter we will perform a statistical analysis
of the lattice spectra using such methods [5]. We start
from the assumption that the average eigenvalue density,
p(A), can be separated from the fluctuations of the
eigenvalues about their average position. This allows us
to unfold the spectrum. This is a procedure in which the
eigenvalues are rescaled according to the average local
level density. Formally, the unfolded spectrum (A'„], with
average eigenvalue density p'(A) = 1, is given by

[23'"s, r, rC] = O. (3)
The important difference is that

(Cr2K) = 1, but (r2K) = —1 . (4)

From the analysis of the spectra of the Hamiltonians
of classically chaotic systems, we have learned that de-
pending on the time reversal symmetry of the system
the level correlations fall into three different universality
classes. We want to stress that an antiunitary symme-
try determines whether the matrix elements are complex,
real, or quaternion real [6]. The corresponding invari-
ant random matrix ensembles are called the Gaussian uni-
tary ensemble (GUE), the Gaussian orthogonal ensemble
(GOE), and the Gaussian symplectic ensemble (GSE), re-
spectively. According to general universality arguments
[7] the correlations between eigenvalues in the bulk of the
spectrum, as opposed to those near the edge of the spec-
trum, are not sensitive to many other details of the random
matrix model. For example, eigenvalue fluctuations in the
bulk of the spectrum of random matrix models [2], with
the chiral symmetry of the Dirac operator built in, will
be given by one of the invariant random matrix models
(GUE, GOE, or GSE).

Let us analyze the antiunitary symmetries of the Eu-
clidean Dirac operator, 23 =—iy„B~ + y~A~, for funda-
mental fermions in an arbitrary SU(N, .) background gauge
field A~. For three or more colors there are no antiunitary
symmetries, and the matrix elements of the Dirac operator
23 are complex. For two colors the situation is different.
In the continuum theory we have [I]

[23""',Cr, 1C] = O, (2)
where C is the charge conjugation matrix (C = y2y4), r2
is one of the Pauli spin matrices, and K is the charge
conjugation operator. Naive lattice fermions also obey this
symmetry, but for Wilson fermions it is violated by the r
term. For staggered lattice fermions the only remnant of
the y matrices is a phase factor ~1 and instead of (2) we
have [8]

An

p(A) dA = A,'. From a similar analysis of the time reversal operator in
quantum mechanics (see [9)) we conclude that in the
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continuum theory the matrix elements of the Dirac operator
can be chosen real, whereas for staggered fermions they
can be organized into real quaternions. Therefore, we
expect that the level correlations of the eigenvalues of
D ' "' are described by the GOE, whereas for D '"g they
are given by the GSE. A necessary condition in both cases
is that the gauge potential is "sufficiently random. " For
Wilson fermions the matrix elements are complex even for
two colors, but at present it is not clear whether breaking
the antiunitary symmetry by an irrelevant operator leads to
different level statistics.

In his work, Kalkreuter [3] gives results for only a few
SU(2) gauge field configurations, namely for p = 4jg~ =
1.8 and p = 2.8, both with periodic and antiperiodic
boundary conditions in the Euclidean time direction
(in the spatial directions he uses periodic boundary
conditions). His configurations have been obtained for
dynamical staggered fermions with a mass I of 2ma =
0.2 (a is the lattice spacing). For p = 1.8 the theory is
certainly in the strong coupling phase, but it is generally
believed that asymptotic scaling has been reached for
P = 2.8.

With the eigenvalues of only one configuration we
are unable to perform an ensemble average of their
correlations. Instead we will perform a spectral average,
which, at least in random matrix theory can be shown to
be equal to the ensemble average [10]. For the present
data we have verified numerically that the eigenvalue
correlations do not change over the range of the spectrum.

The integrated level density (see Fig. 1)

N(A) = p(A') dA'

N(x, x + n) = p'(A) dA,

where p'(A) is the unfolded spectral density. So, N(x, x +
n) is the number of eigenvalues in a sequence of length n

starting at x. The number variance is defined by
P

Xp(n) = —g[N(x, , x; + n) —n],

where points x; are regularly spaced such that the se-
quences [x;,x; + n] cover the complete spectrum. It
can be related to the two-point level correlation function
which is known analytically in random matrix theory (see

of the eigenvalues of X7'"g follows immediately from the
10 368 eigenvalues calculated by Kalkreuter [3]. Except
for a possible nonanalytical behavior at the ends of the
spectrum, it is extremely smooth and almost linear. To
unfold the spectrum we cut it in pieces of 500 eigenvalues
and fit them by a second order polynomial. We have
checked that this results in an average eigenvalue density
equal to 1, and that our results are insensitive to the details
of the cuts.

To define our statistics we introduce the quantity
x+n
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FIG. 1. The integrated eigenvalue density N(A) of the Eu-
clidean lattice Dirac operator for SU(2) color with staggered
fermions. Each curve is the result for one equilibrated gauge
field configuration with P as indicated in the figure.

2
~3(r) = —, (r —2r s + s ) Xp(s) ds,

and does not receive contributions from the quadratic term
in Xq(s) so that small unfolding errors are eliminated.
Asymptotically, for r ~ 1, one finds for the GSE

1 9
~s(r) = —~r.(r)—

2 16m~
(10)

Results for A3 are shown in the middle parts of Figs. 2
and 3. Numerical results obtained from the data of

[11]). For a random sequence of levels (Poisson spec-
trum) it can be shown that Xq(n) = n (see [5]).

Our results for Xq(n) are shown in the upper parts
of Fig. 2 (P = 1.8) and Fig. 3 (P = 2.8). (To eliminate
inaccuracies in the unfolding procedure we excluded
500 eigenvalues at the ends of the spectrum. ) Long range
fluctuations are almost completely absent. Instead of a
variance of 100 for an average sequence of length 100 we
find a variance of only 0.4, showing the presence of very
strong correlations between the eigenvalues. From what
we have said before, we expect that they can be described
by the GSE. Indeed, the theoretical result (full curve) for
r ~ 1 given by

1 772 1$,(r) =, ~ In(4~r) + y + 1 + + O
27T2 k 8 7T r

(8)

shows perfect agreement with the lattice data. For
comparison, we have also given the result for the GUE
(dashed curve). The result for the GOE is for the most
part outside the range of the figure.

A much smoother statistic is the 53 statistic originally
introduced by Dyson and Mehta [12]. It is related to the
number variance by [13]
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sector for staggered fermions differs from the continuum
theory, it is not surprising to find level correlations that
belong to a different universality class. It would be
very interesting to analyze the fate of the antiunitary
symmetries and eigenvalue correlations in the continuum
limit of the lattice gauge theory. Lattice simulations with
larger values of P and bigger lattices are required to
investigate this point.

For three or more colors the antiunitary symmetries are
broken both in the continuum theory and for staggered
lattice fermions. We predict that in this case the eigenvalue
correlations are given by the GUE. It would be worthwhile
to obtain the complete Dirac spectrum also for this case.

A final point of interest we want to mention is the fate
of level correlations during the chiral phase transition.
From solid state physics [15] we know a delocalization
transition is associated with a transition in the level
statistics which raises the hope that such phenomena can
be seen in QCD as well.

The reported work was partially supported by the US
DOE Grant No. DE-FG-88ER40388. We are grateful
to Thomas Kalkreuter who made his eigenvalue spectra
available and enabled us to carry out this investigation.
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