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Statistical Mechanics of Membrane Adhesion by Reversible Molecular Bonds
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We present a simple statistical-mechanical model for membranes adhering by thermally fluctuating,
reversible molecular bonds. The free energy of the molecular bonds, which interact through the
membrane tension, can be related to that of the one-component two-dimensional Coulomb plasma
in the grand-canonical ensemble. Using the known properties of the Coulomb plasma, we compute
the macroscopic membrane-membrane adhesive potential. We find that, unlike existing theories of
membrane adhesion, thermal fluctuations assist adhesion and that the weak-adhesion potential has an
unexpectedly long, temperature-controlled range.

PACS numbers: 87.22.Fy, 34.20.Cf, 82.65.Dp, 87.22.Bt

The nature of the interactions between surfactant-
bilayer membranes controls, in part, the phase behavior
of amphiphilic systems [1]. Membrane-membrane forces
consequently have been well studied, in particular, for
one-component model bilayers for which it was estab-
lished that the dominant attractive force is the van der
Waals interaction while electrostatic repulsion and hydra-
tion forces produce repulsion [2]. It was also shown [3]
that thermally induced membrane-membrane collisions
play an important role. They generate an effective re-
pulsion, the Helfrich force [4], which competes with the
van der Waals force.

Membrane-membrane forces have also been measured
[5] for biological membranes. Adhesion in biological
membranes is not due to the van der Waals attraction
but instead to the formation of weak, but highly specific,
molecular bonds between complementary pairs of proteins
[denoted by "lock*' (L) and "key" (K)] imbedded in the
two membranes [6]. Bonded L and K pairs, referred to
below as "LK molecules, " have binding energies which
are only of order (1—10)kttT [7]. Thermal Iluctuations
between the bonded and unbonded states are thus impor-
tant and in this Letter we will show how, for a simple
model, these fluctuations produce a long-range attraction
between the membranes whose strength exceeds that of
the repulsion generated by thermal collisions.

Our model is illustrated in Fig. 1. The spacing be-
tween LK molecules is, under typical conditions, large
compared to molecular dimensions, so we will neglect di-
rect protein-protein forces. LK molecules do, however,
interact indirectly through the elastic force they exert
on the membranes [8], which can produce a membrane-
mediated long-range coupling [9]. We will assume the
two membranes to be under a tension y, as is true for
white blood cells (WBC's) [10] and for adhering cells in

general [11]. In that case, the membrane-mediated elas-
tic coupling produces a logarithmic pair potential between
LK molecules [see Eq. (8)]. Nonadhesive membrane gly-
coproteins ("glycocalix") squeezed between the mem-
branes provide a long-range osmotic repulsive pressure

II [12]. We will assume 11 to be constant. Finally, the
L and K molecules are assumed to be mobile inside the
membranes [13].

The statistical mechanics of the model can be examined
by a mapping of its partition function onto that of the
grand-canonical partition function of the one-component
two-dimensional (2D) Coulomb plasma (OCP). Using this

mapping, we find the following results for the adhesion
potential energy. For LK binding energies F& of order
keT (weak binding), the potential is smooth and has
a temperature controlled range s = (2kqT/aery)'l which
is large compared to the microscopic range of protein-
protein forces. It exceeds the thermal collision repulsive
force and it does not vanish in the limit of zero binding
energy. In the strong binding limit, with F& large
compared to k~T, there is a freezing transition from a 2D
liquid to a 2D solid for membrane spacings of order g,
followed by a sudden loss of adhesion for spacings of
order Ahf ~ (F~/y)'t . Examples of calculated adhesion
potentials are shown in Fig. 2.

The Hamiltonian of our model is the sum of an elastic
energy for the membrane-membrane spacing and an os-
motic repulsive energy

AE
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FEG. 1. Membrane adhesion by lock-and-key molecules. The
intermembrane spacing is h(r). Mobile lock (L) and key (K)
molecules can form weak, specific chemical bonds (I.K) at sites
R;. They impose a local membrane spacing hp. Nonadhesive
glycoproteins (wiggly lines) produce a long-range repulsion.
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with h(r) the position-dependent intermembrane spacing
and ~ the Helfrich bending energy [4]. We will assume
circular membranes of area A, flat at the edges. The bot-
tom membrane contains N indistinguishable L molecules,
and the top membrane contains N indistinguishable K
molecules. A thermally fiuctuating fraction @ = M/N
is combined into LK molecules. At the sites R; (i =
1, 2, . . . , M) of the LK molecules, h(r) is assumed fixed:
h(r = R, ) = hp with hp the size of an LK molecule.

The free energy of the model is computed in two
steps. We first fix (i) the mean intermembrane spacing
at (h) = h and (ii) the number of LK molecules at M and
compute the free energy per particle f(@,h ) at fixed @
and (h) = h. From Eq. (1) it follows that

f(g, r) = — In(, d R;
iV 1

—-'V f [V(VV)'+ (V'V)'ld'

)
+ const. (2)

The functional integral in Eq. (2) over the spacing profile
h(r) is constrained by the conditions h(r = R;) = hp and

by the imposition of a mean spacing (h) = h. We will
not include any membrane-membrane collisions and later
check when this assumption holds.

The second step is to calculate the total free energy
allowing @ and h to vary. This step can be per-
formed straightforwardly in the thermodynamic limit
N ~ ~, A ~ ~ with p = A/N fixed using the method of
steepest descent. The result is that the full free energy
must be the minimum of

FIG. 2. Adhesion potential energy V(h)/k&TN for weak
(E~ = 3k~T) and strong (EB = 30k~T) binding. N is the
number of lock (or key) molecules in a layer. The membrane
spacing Ah is measured from the spacing hp imposed by a
lock-and-key assembly and is in units of s = (2kHT/my)'~.
The fracture spacing Ah~ for E& = 30k&T is indicated.

with respect to @ and h (we absorbed a constant of
order ksT in a redefinition of Eii). Here, f,„(P,h ) is the
difference between f(P, h) and the free energy per particle
if there is no elastic coupling.

We can interpret the function F(@,h) as the mean-
field free energy of a reactive mixture of L's and K's in
chemical equilibrium with their reaction product, the LK
molecules, so L + K ~ LK. The equilibrium constant
of the reaction is proportional to e~~". The elastic
free energy f,„(P,h) represents a "correlation energy"
between the products causing deviations from simple
chemical equilibrium theory. Our problem is reduced to
computing f„(P,h ).

To gain qualitative insight, consider Eq. (3) in the
regime of large h when the LK fraction @ must be small.
To estimate f,„(@,h), note that the elastic deformation
surrounding a point perturbation in an elastic sheet is pro-
portional to ln(r). The elastic self-energy of the dimple of
height Ah = h —ho surrounding an LK molecule is then
of order yb, h 1n(R/g) with R a large distance cutoff and

$ a small distance cutoff. The free energy reduces to

F(P, h ) —Fp ~ ksTQ —(PEs —2) + ln@
pA

+ yah 1n(R/$) —p 'Hh.
(4)

For R, we must take the nearest-neighbor distance R„„~
The elastic term in Eq. (4) is then of the same

mathematical form as the entropic term. It effectively
lowers the thermal energy k~T by an amount of order
yAh . When yAh exceeds a critical value of order
kpT, the effective temperature becomes negative so we
must expect a freezing transition around spacings of order
s ~ Qk&T/y Next, when y. Ah exceeds a critical value
of order Eli, the free energy is minimized by P = 0.
Adhesion is lost since there are no assemblies left, so we
should expect fracture around a spacing b, h~ ~ JEli/y.

To compute f„(P,h), we minimize the elastic energy
in Eq. (1) with respect to the profile h(r), under the con-
straints h(r = R;) = hp and (h) = h. Using the Lagrange
multipliers p, ; to fix the membrane spacing at the sites of
LK molecules and the Lagrange multiplier v to fix the
mean spacing, one finds that the profile h, (r) which mini-
mizes f„(P,h ) obeys

N

(yV —I~V )h, = —v + g p;6(r —R, ) . , (5)

Using Gauss' law and the boundary condition of flat
edges, it follows from Eq. (5) that

M
;=1 Pi
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The solution of Eq. (5) is

h, (r) —= (h)1R, l + (I/2' y) p &», ; ln Ir —R; I/g
i=1

—A(v/47ry) 21nR/s) —1 + (r/R), (7)

g(r) =
-(ln(2/I') + 1 —2C), r -0, (10,)
—0.374 + (lnl —0.262)/r, r —-, (10b)

with s = Q~/y and with (h)IR, l an integration constant.
Equation (7) is valid only outside a set of disks of
radius s surrounding each LK molecule (of order 100 A
for WBC's). Formally, h, (r) is proportional to the 2D
electrostatic potential of a set of M "charges" p, ; placed
on a disk with a uniform neutralizing background charge
density proportional to v.

Writing h(r) = h, (r) + h'(r), performing the functional
integral over h'(r) in Eq. (2), and using Eq. (7) gives an ef-
fective potential energy V((R;=& M)) = V, ((R;=& M)) +
Ur((R;=& M)) for the set of M charges which is the sum of
an enthalpic term with long-range repulsive forces between
the LK molecules [due to the elastic energy of the deforma-
tion profile Eq. (7)] and an entropic term with long-range
attractive forces [due to thermal fluctuations of the mem-
brane shape around Eq. (7)]:

With C = 0.577 Euler's constant. In the small I limit, the
assemblies form a fluid "plasma" with (r/p@)' acting
as a screening length. With increasing I, we reach a
freezing point at I = I, (with [19] 16/37r ) I",. ) 2).
Beyond I"„ the LK molecules form a triangular Wigner
crystal with, possibly, an intervening hexatic phase JUst
below I, . The equation of state is, for any I, that of
an ideal gas with an effective temperature T,ff T—
e /4k» that is below the real temperature [19].

To establish the self-consistency condition on the mag-
nitude of the charge e, we insert Eq. (5) into Eq. (1) and
use the constraints and Gauss' law to show that the inter-
nal energy equals zAv(h hp). Using the relationship
between free energy and internal energy and the definition
of I, it follows that

1&,h/s = r&1' — + 2g(I) + rg'(I),
2

(1 1)

M 3M+ In(R/g) —™ (8a)

Vr((R, =& M)) = k»T ln
M ln(R /se)

/3yF'

In(l R;, I/g)+ ln ' +
Pys'

f„(@,h)/keT = — In(~p(0$ ) + I g(I") .
4

The function g(I ) has the limiting behavior [18]

In Eq. (8a), e = v/$2vryp@ is the effective charge, p =
1V/A the concentration of adhesion molecules, and R;, =
R; —R1. We neglected in Eq. (8a) fluctuations of the p, ;
parameters and set the &&L; equal to vA/M [see Eq. (6)],
with v to be determined self-consistently later. Monte
Carlo simulation of the general case [14] indicates that this
"mean-field" assumption is valid provided the normalized
density pg is small. In Eq. (8b) we neglected three-body
interaction terms and beyond.

The potential U, ((R;=& M)) is identical to the electro-
static energy of an OCP of M particles of charge e in a
uniform neutralizing background [15]. If I = e~/keT is
large compared to ln '(I/g p@) then the entropic force
between the I.K molecules is small compared to the en-
thalpic force. Up to an additive constant, f„(P,h ) is then
well approximated by the excess canonical free energy per
particle of the OCP. From the extensiveness of the OCP
free energy [16] and from scaling arguments [17], it is
known that

with s = (2keT/wry)&1~ the characteristic length scale
encountered below Eq. (4), and with Ah —= h —ho the
mean membrane spacing measured from hp.

We will express our results in terms of the adhesive
potential V(h) = F(h) + IIh —Fo, with F(h) the mini-
mum of F(@,h) with respect to @ for fixed h. This
potential has the property that dV(h)/dh = II for a free
energy minimum, so the adhesive force per unit area
derived from V(h ) equals the repulsive osmotic pressure.
We will discuss the results separately for the strong-
binding regime, with E~ && k&T, and the weak-binding
regime, with Ep « kgT.

For strong binding the LK assembly fraction @ is close
to 1 for Ah ~ Ahf and close to 0 for Ah ) Ahf with

Ahf =—
2Ep

[—»(~pe') + 4g(~)]
7Ty

(12)

—
4 In(~ p g') + g(rgh)

—
z ln(~p g ) + 2g(rqh) + I qhg'(rqh)]

(b, h ~ Ahf), (13)

with 1 zh the solution of Eq. (11) for @ = 1. The poten-
tial Eq. (13) is nearly harmonic with a spring constant per
molecule of order the membrane tension y. For small Ah,
the LK's are in the liquid state [20]. The freezing tran-
sition occurs when I ~h = I „which happens when Ah is
of order g. Increasing Ah further, we reach b hf where P

(assuming pg (( 1). For 1I&h ( 1I&hf, the adhesion po-
tential is

V(h ) 7r—= —Ep +-
pA. 2
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rapidly drops from to an exponentially small value. Ad-
hesion is nearly lost but there remains a weak attractive
potential,

Tel PFa+ s( ) 'n(~—s e')1/2e —~&/~

pA
(Ah ) hhf). (14)
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In the weak-binding regime, the potential energy V(h )
crosses over smoothly from approximately harmonic to
exponentially decaying with no sudden loss of adhesion.
For b, h » g, Eq. (14) is recovered. The range of the
potential is s'. Interestingly, adhesion persists when we
allow a weakly negative F~. This means that the entropic
part of the free energy actually favors adhesion (at least
in the absence of collisions). To see why, consider
again the L s and K's as a reactive mixture in chemical
equilibrium with their reaction product, the LK molecules.
Even if the LK binding energy is negative, there is still
a modest concentration of L,K molecules for entropic
reasons. Preventing LK formation by increasing the
membrane spacing decreases this entropic contribution to
the free energy, leading to an adhesive force.

Collisions between the thermally fluctuating mem-
branes were not included in our calculation. They in-
crease the free energy per unit area by an amount of order
kttT/g„, with g„ the typical distance between collisions
("patch size"). For tense membranes with a mean spac-
ing of h + hp, the patch size is [21] g„= a exp(n[(h +
Ah)/g]2) with n a constant and a the microscopic
cutoff. Collisions can be neglected if [22] ktt T/g„
is small compared to V(h)/A. In the strong-binding
regime, this condition is satisfied provided Fttpa /ktt T »
exp[ —2cr (hp/s) ], and in the weak-binding regime if
pa » exp[ —2cr(hp/s) ]. If these conditions are not sat-
isfied, then V(h)/A exceeds kBT/g„only for hh large
compared to g.

Application of our results to bioadhesion requires
knowledge of the binding energies of adhesive proteins
such as the selectin [8] and integrin [23] molecules.
Although these have not yet been measured directly,
on the basis of macroscopic studies it is believed that
selectin is weak binding and integrin strong binding [24].
Selectin-and integrin-based adhesion thus may exhibit
the two types of potentials shown in Fig. 2. If we
use the measured membrane tension of WBC's [12] in
the weak-binding range s = (2kttT/~y)'/, we find a
range of order 100 A. The strong-binding range Ahf
should be even longer. Experimental studies [9] of the
interaction range of strong-binding LK molecules report
values only of the order of 10 A. A possible origin for
the discrepancy lies in the fact that current experiments
so far are performed on lipid layers attached to solid
substrates, which surpresses membrane deformability —a
key ingredient of our model.
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