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Electron-Electron Collisions and a New Hydrodynamic Effect in Two-Dimensional Electron Gas
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Some characteristic features of momentum relaxation related to electron-electron collisions in the
two-dimensional degenerate electron gas have been analyzed. It has been shown that, along with
the Poiseuille Aow, a new effect of a hydrodynamic type due to the one-dimensional diffusion of
carriers exists in two-dimensional high-mobility wires. It is this effect that seems to be revealed in the
experiments reported by Molenkamp and de Jong [Phys. Rev. 8 49, 5038 (1994)]. The sensitivity of
the new effect to weak magnetic fields may facilitate its experimental identification.

PACS numbers: 72.10.Bg

Recently, Molenkamp and de Jong [1] have reported
that they found a hydrodynamic momentum transport
mechanism in the electron gas, the mechanism having
been predicted earlier by one of the authors of this

paper [2]. The temperature dependence of the electrical
resistivity of a two-dimensional high-mobility wire had a
minimum. This result was discussed by the authors of
the experiment using the theory of Ref. [2]. The latter
predicts the appearance of a viscous Poiseuille Bow in the
three-dimensional electron gas because of frequent normal
collisions, under the conditions

lee « d /lee « lv,

where l„ is the mean free path (MFP) for normal
collisions, d is the sample thickness, and l ~ is the
electron MFP for bulk collisions without quasimomentum
conservation. The aim of the present communication is to
show that in the degenerate two-dimensional electron gas
(2DEG) hydrodynamic phenomena of principally another

type are possible, and these phenomena, most probably,
were observed in the experiment of Ref. [1].

We shall start with discussing some features of
electron-electron relaxation in the 2DEG that, as we
believe, are essential for understanding a wide variety
of effects studied experimentally. Afterwards, we shall
discuss hydrodynamic phenomena.

Electron-electron collisions in the 2DEG are, generally
speaking, small-angl. processes. A characteristic scatter-
ing angle with a random choice of ~ partner, as follows
from the energy and momentum conservation laws and
the Pauli principle, has the order T/eF, where T is the
temperature and eF is the Fermi energy. The exception
is the collision of electrons with opposite momenta, i.e.,

p~ + p2 = 0, whose contribution to the 2DEG is not small
[3]. In this case the pair of final states with zero total mo-
mentum is rotated in an arbitrary manner, so the scattering
angle is arbitrary. Such collisions, however, by virtue of
the symmetry of initial states, result in the relaxation of
even-momentum distributions only. Thus it becomes clear
that in the 2DEG there exist two substantially different re-
laxation MFP's: l, and l for even- and odd-momentum

V(P, q) = W] Q 3 4n ~n2(1 —n3) (1 —n4)

x 6(p, + p~
—p, —p4),

6(8] + 82 83 84)de~ deq de3 de4,

D,=(f(B)] = , [f(II + y/2) ——f(B—7/2)]
Here the nonequilibrium correction to the distribution
function is represented as ( dn/de)y, the —subscripts s
and a denote the symmetric and antisymmetric parts of
the function g (in the operator D — the superscripts +
and —correspond to s and a), n(e) is the equilibrium
Fermi distribution function, and W is the squared matrix
element of the electron-electron interaction. We have
assumed that the function ~ depends only on the angle
0, which characterizes the point position on the Fermi
surface [taking into account the energy dependence of
~, as estimates show, leads only to the appearance of
a logarithmic factor of order 1n(eF/T), as well as in

distributions, respectively, with l, « l . The MFP l,. =
l„—(eF/T) is determined by collisions of electrons with
almost opposite momenta ~p~ + pz~ (T/eF)PF These.
collisions, as long as the momenta of the colliding elec-
trons differ from being opposite, affect the odd relaxation.
It appears that their contribution here is of the same order as
that for small-angle processes with ~p~ + p2~ = pF. That
is why the corresponding transport MFP l„= l„„(eF/T)
[4,5]. The above concerns smooth angle distributions that
noticeably vary at angles of the order of unity. The differ-
ence between the symmetric and antisymmetric relaxation
decreases for a sharp distribution [6,7].

In order to investigate these questions we shall resort
to the linearized electron-electron collision operator J(y).
The integral over energy of this quantity describes the
angular relaxation. The result can be represented as

2' 277

V(P, p) (D~ D„)

x g.vy(0)dk dp, (2)

where
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Chaplic's formula [9] for energy relaxation]. The angle
cp between the momenta of the initial p~ and the final

p3 states is the measure of the momentum transferred on a
collision, sing/2 =

~p~
—p3~/2pF. The angle P between

—p] and pz characterizes the total momentum of the pair
of colliding electrons, sing/2 = ~pi + p2(/2pF.

It is easy to see that V(p, P) —exp( —PpeF/T) for
pP » T/eF Thi.s means that the kernel V is exponen-
tially small outside the region pP ~ T/eF Thi. s property
of the kernel V suffices for further calculations. For the
even function in (2) the quantity D&g, always has the
order of g,. , and the finite difference value D g, is not
small only for p ~ Op, where Op is a characteristic angle
scale of the g(0) variation. Thus the region of the two-
dimensional integration for an even function is bounded
by the two conditions p ~ Oo and pP ~ T/eF. For the
odd function ~, in (2) one also should take account of the
additional restriction imposed by the factor D&. As a re-
sult, we obtain

l, (OO) = l„, l, (go) = l„[1 + (0O/gz. ) ],
~r = (7'/~F)'" (3)

Thus, for the typical angles Op» O&, the antisymmetric
distributions relax slower than symmetric ones.

In what follows, it will be important to understand
how the above features of relaxation processes affect the
structure of current states in the coordinate space. If one
neglects inefficient collisions with the scattering angle
p = T/~F, then the process of current propagation is
determined by colliding electrons with opposite momenta.
As a result of the collision of a nonequilibrium electron
p with an equilibrium one —p, there appear (a) a "hole"
with momentum —p, which moves in the direction
contrary to the initial electron and, therefore, carrying
the same electric current; (b) a pair of electrons with
opposite momenta, rotated through an arbitrary angle and,
obviously, giving no contribution to the current. (By a
hole we mean the absence of an electron in the appropriate
state. ) Further collisions turn the hole into an electron
moving in the same direction as the initial one. Thus
such collisions do not change the current, whereas the
charge transport process is a one-dimensional diffusion
of carriers with the step l, . Collisions of electrons whose
momenta are directed not too much opposite do affect the
movement direction of such an electron-hole carrier, but
a noticeable change (by the angle =0) requires a time of
order 7., (0) = uF l, (0), where vF is the Fermi velocity.

It follows from what has been said above that in a
2DEG wire of width d the character of charge transfer
depends on the ratio of the diffusion trajectory length
before the collision with the boundary d /l, . to the
antisymmetric relaxation MFP l, .

(1) Poiseuille flow is established provided that d2/I, »
l, . During this process at distances of the order (l, l, )'~2 &&

d an odd-momentum drift distribution function g(p) =
u p becomes established, u = u(z) being the velocity

vsinO + ' =0,
l,

v sinO + = —eFv cosO.
~ ~J's ga

(6)
a~ I.(e,)

The use of the modified r approximation in Eqs. (5)
and (6) is justified by the following argument. The
replacement of J[g,) by g, /l, in the first equation, as
can be easily seen, does not violate the momentum
preservation law. In the second equation it was taken
into account that a carrier's emergence from the current-
carrying region at angles =Op leads to its destruction at the
boundary. It is not difficult to get a rather cumbersome
expression solving Eqs. (5) and (6) for the diffusive
scattering at the boundaries. Qualitatively, the result is
given by the following expression for the transport MFP
averaged over g.'

[l„(0)] ' = (d /l, O ) ' + [l,(00)] ', 0 « d/l, , (7)

0O = d/[l, (OO)l, ]' (8)

Here the first term on the right-hand side of (7) is the
one-dimensional diffusion path to the boundary of the
charge carrier propagating at the angle O. The second
term in (7) takes into account that the carriers propagating
at angles O ~ Op diffuse for so long that the slow
antisymmetric relaxation processes have enough time
to essentially change the direction of their motion and
bring them to the boundary. For 0 » d/l„a Knudsen
regime arises. Equations (3) and (8) make a system of

of the ordered propagation of quasiparticles, parallel to
the wire boundary. The transport MFP is l,„=d2/l„
while the corresponding electrical resistivity is p —T
These conclusions can be easily reached when solving the
kinetic equation by expanding over small spatial gradients
(actually, this is the Chapman-Enskog method applied to
the quasiparticle gas [2]). The electron gas viscosity is
proportional to the MFP l, = l„, but the expansion is
convergent if the inequality d~/l, && l, is fulfilled. Thus,
because of the existence of the two relaxation MFP's l, and
l, that describe the normal collision effect, the conditions
for the existence of the viscous Poiseuille How are changed
[cf. condition (I)],

l, « d /l, « lv.

(2) In the opposite limit case, where d /l, « I„most
electrons lose their momentum at the boundary before
the antisymmetric relaxation processes are revealed. The
electric current is determined by a small group of grazing
carriers propagating at small angles (of order Oo) to
the 2DEG boundary, i.e., the nonequilibrium distribution
function is highly antistrophic. In these conditions the
kinetic equation can be replaced by the equation system
for the even and odd parts of the distribution function,
where instead of the collision operator J(~, ,(0)), the
appropriate relaxation time approximation is used,
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algebraic equations, from which the angle Op is found.
The resistivity of the wire is p = (pF/e2n)l, „', where

L I (0)dO = d[l (0 )/l ]' = d l'/ I —T

(9)

I, T/RF « d /I, « I (Io)
Thus the existence region of the Poiseuille flow be-

comes narrower, which is seen by comparing (4) with (1),
since L, » l, —L„. But on the whole, due to the new
mechanism (9) and (10), the region of the inverse p vs
T dependence becomes wider, as compared to the three-
dimensional case (1). The reason is that, instead of the in-

equality L, «d, a much easier restriction L Op «d must
be fulfilled in the case of grazing electrons. (The diffu-
sion step across the wire must be small compared with
the wire width. ) As a result, a decrease in resistivity may
be observed with increasing temperature even in narrow
(d « I„)2DEG wires.

Up to now we assumed that bulk collisions not conserv-
ing momentum (e.g. , those with impurities or phonons)
are rather infrequent: L& » L » L, . It can be easily seen,
however, that in contrast to the condition L|/ » L, the re-
quirement L& » l, is necessary only for the Poiseuille
fiows (4). Collisions with loss of the quasimomentum can
be accounted for in Eqs. (5) and (6) by the replacement
l, (00) ' ~ l, (Oo)

' + lv '. The least of the MFP's de-
limits the existence time for the one-dimensional current-
carrying state and determines the angular size of the
effective carrier group, Op, and, simultaneously, the tem-
perature dependence p(T). It should be noted that with
impurity scattering the linearity of the temperature depen-
dence is preserved, although the dependence on the other
parameters in (9) will obviously change.

Since a narrow group of carriers with a long MFP is
essential for the specifically two-dimensional hydrody-
namic regime, this also causes the effect to be sensitive
to a relatively weak transversal magnetic field. The field
takes the carrier out of the angle range of order Op during
the time r00/vF, where r is the Larmor radius. That is
why the effect of a weak magnetic field can be quali-
tatively accounted for by adding (Or) ' to the expres-
sion for [l,„(0)] '. Thus a substantial positive magnetic
resistance arises in this regime when rOo ~ l„(Op) [val-
ues for l„(Oo) and Oo are taken when H = 0]. With in-
crease of the field, the resistance gro~s as r'~3 until either
r » l2/d at l, » d or r » d2/l, at l, « d. In the first
case, further increase of the field leads to the known re-
sult I„=d ln(r/d). In the second case, it results in a
regime similar to the Poiseuille liow l„= d2/l, . For the
sake of comparison, we recall that under the conditions of
Poiseuille How the magnetic field noticeably affects con-
ductivity only at r « l„and, besides, the magnetic resis-
tivity is negative here.

In the experiment of Ref. [1] the 2DEG wires were pre-
pared in (Al, Ga)As heterostructures. The wires had the

width d = 3.5 p, m, the electron-impurity MFP L; = 12.4—
19.7 p, m, and electron density about 2.2 X 10" cm . In
the temperature range where the inverse dependence of
electrical resistivity was observed, the condition d /l, «
L, was easily fulfilled. That is why the Poiseuille mech-
anism cannot be realized here. As estimates show, the
parameter Op varies from 0.3 to 0.8 in the inverse de-
pendence range, and roughly speaking, l; = l, (Oo). Thus
the results of the experiment of Ref. [1] can be qualita-
tively described by the above-suggested mechanism re-
lated to the one-dimensional diffusion of carriers. It could
be experimentally confirmed by the appearance of positive
magnetic resistivity in anomalously weak magnetic fields.

In conclusion, we have investigated the momentum re-
laxation mechanisms in 2DEG wires under the effect of
frequent normal electron-electron collisions. %'e showed
the existence of a principally new two-dimensional "hy-
drodynamic type" effect due to the one-dimensional diffu-
sion of charge carriers. This effect is related to a narrow
group of grazing carriers, and it can lead to the inverse
temperature dependence of the resistivity of 2DEG wires
even under the conditions when L„» d, i.e., opposite to
the Poiseuille conditions. This effect appears to be very
sensitive to the magnetic field. A qualitative explanation
of the experiment by Molenkamp and de Jong has been
given. It is noteworthy that in this experiment the full-
size effect of the hydrodynamic type in the electron gas
was observed for the first time.
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possible in part by Grant No. N U2DOOO from the
International Science Foundation.
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