
VOLUME 74, NUMBER 3 PH YS ICAL REVIEW LETTERS 16 JANUARY 1995

Simple Maps with Fractal Diffusion Coefficients
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We consider chains of one-dimensional, piecewise linear, chaotic maps with uniform slope. We study
the diffusive behavior of an initially nonuniform distribution of points as a function of the slope of the
map by solving the Frobenius-Perron equation. For Markov partition values of the slope, we relate
the diffusion coefficient to eigenvalues of the topological transition matrix. The diffusion coefficient
obtained shows a fractal structure as a function of the slope of the map. This result may be typical for
a wide class of maps, such as two-dimensional sawtooth maps.
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The study of simple models for nonequilibrium pro-
cesses in statistical physics has been one of the central
themes in the theory of chaotic dynamical systems [1—3].
A great deal of work has been done to describe the
large-scale motion in systems of independent particles,
each moving under the action of relatively simple
maps, operating at discrete intervals of time. For one-
dimensional sinusoidal, or piecewise differentiable maps,
a variety of diffusivelike and ballisticlike behavior has
been studied [4—7]. For two-dimensional, conservative
Hamiltonian maps, parameter dependent momentum-
diffusion coefficients have been computed, often by
a combination of numerical and analytical methods
which explore the phase space structure of the dynami-
cal system [8—10]. Recently, Gaspard and co-workers
have established an explicit connection between fun-
damental quantities of dynamical systems, such as the
Kolmogorov-Sinai entropy and Lyapunov exponents,
and transport coefficients [11—14]. Related connections
between transport coefficients and Lyapunov exponents
have been discussed for nonequilibrium systems with
thermostats [15]. There is also a close connection of
the work described here to that based on periodic orbit
expansions for transport coefficients [7,16].

In this Letter, chains of piecewise linear, one-
dimensional, chaotic maps

x„, = [x,]+ m. (x, )
—= M„(x,) (1)

will be considered, where 7. is the discrete time variable,
[x,] is the largest integer smaller than x„m, (x, + 1) =
m, (x,) represents a periodic function, and a stands for
the control parameter, which is the slope of the map. We
consider a chain of maps m, (x,) with chain length L. The
absolute value of the slope is assumed to be uniform,
and its logarithm is equal to the Lyapunov exponent.
We assume the maps are expanding, i.e. , that ~a~ ~ 1.
Following the approach in [11—14], we describe a method
by which the diffusion coefficient for this class of maps

can be computed for a broad range of parameter values.
The method will be illustrated by the map

m, (x,):=

p.+t(x) = dy p.(y) ~(x —M. (y)), (3)

M+(x)
3 ~ % % p % w i ~ p

FIG. 1. Illustration of the dynamical system Eqs. (1) and (2)
for a particular slope, a = 3. The Markov partition given by
the dashed grid leads to the construction of the transition matrix
in Eq. (9).

1
aXT, 0&x, ~ 2, (2)
ax, +1 —a, 2(x ~1,

a ) 0, as sketched in Fig. 1, which has been introduced
and discussed in [3,4, 13]. We find that the diffusion
coefficient for this map shows a very rich fractal structure
as a function of the slope.

To describe the dynamical behavior of an arbitrary
initial density for a set of particles on some interval
of the line —~ ~ x ~ ~, we will need the Frobenius-
Perron equation, supplemented by boundary conditions.
The Frobenius-Perron equation is given by
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where p, (x) is the probability density for points on the
line, and M, (y) is the map under consideration. We
suppose that the motion takes place on an interval 0 (
x ( L, and we impose periodic boundary conditions, i.e.,
p, (0) = p, (L) for all r, or absorbing boundary conditions
p, (x) = 0 for x = O, L for all 7. [17]. Next we use the
argument of Gaspard and co-workers [11—14] to relate
the eigenmodes of the Frobenius-Perron equation to the
solution of the diffusion equation

= D
a' n(x, t)

LPx
(4)

where n(x, t) is the macroscopic density of particles at
a point x at time t, and D is a diffusion coefficient.
If for large L, and large ~, the first few eigenmodes'
of the Frobenius-Perron equation are identical to those
of the diffusion equation, the diffusion coefficient can
be obtained by matching eigenmodes in an appropriate
scaling limit. More explicitly, for periodic boundary
conditions n(0, t) = n(L, t), one can easily see that for
large times n(x, t) has the form

n(x, t) = const + A exp[ D(4~ /L—)t ~ t(2'/L)x].
(5)

D(a) = lim (L/27r) y„(a) . (7)

For absorbing boundary conditions one relates the dif-
fusion coefficient to the escape rate from the system
by an equation similar to Eq. (7). The escape-rate for-
malism of chaotic dynamics shows that the escape rate
from a system with absorbing boundaries is equal to the
Lyapunov exponent minus the Kolmogorov-Sinai entropy
for particles trapped within the system whose trajecto-
ries lie on a fractal repeller [11]. For the case of maps
with slopes of uniform magnitude considered here, the
Kolmogorov-Sinai entropy for the fractal repeller hxs(a)
is identical to the topological entropy of points on the re-
peller, and it can be computed from y„(a) as hKs(a) =
ln a —yz/4 + O(L 3) [13].

The use of maps with uniform slope is not an essential
ingredient in the calculation of D(a) described below,
which can be applied to more general linear maps. The
main idea is that the Frobenius-Perron equation can be
written as a matrix equation whenever the parameters of
the map are such that one can construct a Markov partition
of the interval (0, L), which has the property that partition
points get mapped onto other partition points by the map
M, (x) [18]. In a related context, these partitions have
been discussed in [19]. For such values of a, Eq. (3) can

Consequently, if one can find a solution of Eq. (3), for
large L and r, in the form of

p(x, r) = const + A'exp[ —yz(a)r ~ i(2m/L)x], (6)

one can relate the decay rate y„(a) to D by

be written as

(I
1

1

0

0 Q ~ ~ ~

1 0 1 0
0 1 1 0
0 1 1 0
0 1 0 1

0 0
Q ~ ~ ~

Q ~ ~ ~

1 0
1 0

1 0 )
0 0
0 0
0 o ~ ~

~ ~ ~

(9)

(0 1 0 0 . 0 0 1 1

In the limit ~ = ~, for any L, and any Markov partition
value of a, the Frobenius-Perron equation can be solved
in terms of the eigenmodes of M for any initial value
po(x) which is uniform in each of the Markov partition
regions. For periodic boundary conditions, M is always
a (block) circulant [20], the largest eigenvalue of M
is precisely lal, and the corresponding eigenmode is a
constant, representing the equilibrium state. The rate
of decay to equilibrium, y„(a), is obtained as y„(a) =
In(lal/gl), where gl is the next largest eigenvalue of
M [13]. Analytical expressions for D(a) can be derived
for all integer values of a ~ 2. For even integers, the
results of Grossmann and Fujisaka [4] are recovered,
D(a) = (1/24)(a —l)(a —2), and for odd integers we
find D(a) = (1/24) (a2 —1). To obtain D(a) for a general
Markov partition value of a, one can use computer
methods [21].

Figure 2(a) shows the results for the diffusion coeffi-
cient of the dynamical system Eqs. (1) and (2) for val-
ues of a in the range 2 ~ a ~ 8. In Figs. 2(b) —2(d), we
present magnifications of three small regions in this inter-
val [22]. One can see clearly that D(a) has a complicated
fractal structure with regions exhibiting self-similarity.
In Fig. 3, we show an enlargement of the region for
2-~ a ~ 3. The dashed line is the prediction of D(a)
for a simple random-walk model suggested by Schell,
Fraser, and Kapral [5). Note that the model correctly
accounts for the behavior of D(a) near a = 2. The wig-
gles in this graph can be understood by considering the
transport of particles from one unit interval to another.
These regions are coupled to each other by turnstiles,
where points in one unit interval get mapped outside that
particular interval into another unit interval. As in the

p.+i = (1/lal) M p, ,

where p is a column vector of the probability densities
in each of the Markov partition regions at time ~, and M
is a topological transition matrix whose elements M;, are
unity if points in region j can be mapped into region i and
are zero otherwise.

As a simple example we consider the form of the
matrix M when a = 3, the map M, (x) is given by Eqs. (1)
and (2), and periodic boundary conditions are used on
an interval of length L. In this case the regions of the
partition are all of length 1/2, as illustrated in Fig. 1.
Then M is a 2L X 2L matrix of the form
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FIG. 2. Diffusion coefficient D(a) computed for the dynami-
cal system Eqs. (1) and (2) and some enlargements. Graph (a)
consists of 7908 single data points. In graphs (b) —(d), the dots
are connected with lines. The number of data points is 476 for
(b), 1674 for (c), and 530 for (d).
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FIG. 3. Enlargement of the region of slope a ~ 3 with
the solution for a simple random-walk model (dashed line)
and labels for the values which are significant for "turnstile
dynamics" (see text). For some points, the turnstile coupling
is shown by pairs of boxes. The graph shows 979 single data
points.

case of two-dimensional twist maps, such as the sawtooth
map, these turnstiles are crucial for large-scale transport
[2,23].

The region 2 ~ a ~ 3 can be analyzed by studying the
interaction of turnstiles [24]. One can recognize three
distinct series of values of a, each of which provides a
cascade of apparently self-similar regions of decreasing
size, as the limits a 2 or a 3 are approached. To
understand these series, consider the trajectory of a point
that starts just to the left at x = 1/2. The first iterate

of x = 1/2 is in the second interval (1,2). The series tr
values of a are defined by the condition that the second
iterate of x = 1/2 is at the leftmost point of the upward
turnstile in the second interval (1, 2) (a = 2.732), or that
the third iterate is at the corresponding point in the third
interval (a = 2.920), etc. The numbers on the graph
refer to the number of intervals the image of x = 1/2
has traveled before it gets to the appropriate point on
the turnstiles. Series P points are defined in a similar
way, but they are allowed to have two or more internal
rejections within an interval before reaching the left edge
of a turnstile. Series y points are defined by the condition
that some image of x = 1/2 has reached the rightmost
edge of an upward turnstile (i.e., some point x = n + 1/2,
where n is an integer), and consequently an increase in a
will lead to a decrease in D(a). These cascades provide a
basis for a physical understanding of the features of D(a)
in this region: Particles leave a particular unit interval
through a turnstile and undergo a number of iterations
before they are within another turnstile. Whether they
continue to move in the same or the reverse direction
at the next and later turnstiles is a sensitive function of
the slope of the map. Thus the fractal structure of the
D(a) curve is due to the effects of long-range correlations
among turnstiles, and these correlations lead to changes of
D(a) on an infinitely fine scale. A similar argument can
be employed to explain, at least qualitatively, the fractal
structure of D(a) for higher values of the slope, although
more work needs to be done before a full understanding
of this curve is obtained [25J.

We conclude with a few remarks: (a) Our results
appear to be the first example of a system whose diffusion
coefficient has an unambiguously fractal structure. We
suspect that similar results are obtained for all other one-
dimensional, piecewise linear maps [26], which might
be of interest, e.g. , for chaotic scattering [27], as well
as for transport in maps of more than one dimension,
such as sawtooth maps. We note that oscillations of the
diffusion coefficient with respect to an appropriate control
parameter, which could be a field strength, have already
been found in the standard [8] and the sawtooth map
[10J. (b) It is not known whether this fractal structure
persists for smooth maps where the function M, (x) is
C' or where the map contains some randomness. (c) We
have numerical evidence that the Markov points are dense
for a ~ 2, and we believe that our results give the full
structure of the D(a) function. Nevertheless, it would be
valuable to have a mathematical proof.
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thank the Institute for Physical Science and Technology
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Berlin for financial and other support.
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