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Coexistence of Two Length Scales in X-Ray and Neutron Critical Scattering:
A Theoretical Interpretation
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The theory of critical phenomena in the presence of quenched disorder is applied to x-ray and
neutron experiments which suggest two different length scales for critical fluctuations. Long-range
random strains associated with defects generated near the sample surface can induce crossover to a
"disordered" fixed point with different critical exponents, while the bulk retains the ordinary critical
behavior. For Ho and Tb, it is proposed that the dominant defects are dislocation dipoles, resulting in
a critical exponent for the second correlation length v,. = 1, in reasonable agreement with experiments.
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X-ray and neutron critical scattering experiments in
systems undergoing magnetic [1—3] or structural [4]
phase transitions have recently revealed an unexpected
feature, which appears to be at odds with the existence,
in the critical region, of a single important length scale,
given by the correlation length s, and characterized by
the critical exponent v, defined by s —t ', where t is
the reduced temperature t = ((T —T„)/T, ~

In .contra. st
to this basic tenet of the theory of critical phenomena,
the wave vector dependence of the scattering intensity
is not at all well described by a single Lorentzian with
a width proportional to the inverse of the correlation
length; a much sharper feature appears near the center
of the line, and a reasonable fit is only obtained by a
superposition of a broad Lorentzian (referred to as the
"broad" component), and a much sharper Lorentzian or
Lorentzian squared component (the "sharp" component).
For Ho [1] and Tb [2] the broad component has an
exponent close to the theoretically predicted one for
the magnetic spiral transition [5]. The second, much
larger, length associated with the "sharp component"
scales with temperature as t ', where the new exponent
v, is different from and in most cases larger than the
exponent v associated with the first correlation length.
Other important results of the experiments led to the
conclusion that the sharp feature is related to a layer of
the sample close to the surface [2], but with a thickness
which can be as large as several p, m, a surprisingly large
depth for usual surface phenomena. Also, the dependence
of the intensity of the sharp feature on the surface quality
and mosaic and its enhancement by polishing and other
forms of surface treatment [1] suggest very strongly a
defect-related origin. Defects of unspecified nature, and
the related long-range strain fields have been mentioned
as a possible explanation [1], but no conclusive and
quantitative analysis could be arrived at.

In the present paper we argue that the emergence of
a second length scale is a consequence of the presence

v, = 2/a. (2)

(If a ) d, the short-range disorder case, analyzed by
Grinstein and Luther [6], is applicable instead, and
different critical properties are predicted [8].)

If this picture is adopted for the near-surface region,
and if the scattering probe has a penetration depth
allowing one to sample both the superficial, disorder-
dominated, region and the underlying bulk, the two length
scales, and their different critical exponents, are then
observed to coexist. The relative intensity will in fact

of quenched disorder in the neighborhood of the sample
surface. In this part of the sample a crossover to critical
behavior dominated by a "disordered" fixed point takes
place, while the bulk displays the usual critical properties
for the applicable universality class.

The theory of second order phase transitions in the pres-
ence of quenched disorder was worked out by Grinstein
and Luther [6) for the case of short-range disorder. Later
Weinrib and Halperin [7] (hereafter WH) extended it to
the case of disorder with long-range correlations, which is
more relevant to the experimental results of interest here.
WH [7] analyze a situation in which the local critical tem-
perature T, +ST,(r) d.isplays Iluctuations about T,. due
to the disorder in the system, fluctuations which are de-
scribed by a correlation function g(~r —r'~) that falls off
slowly with distance, with a power law characterized by
an exponent a.'

(6T,(r) 6T, (r')) = g((r —r'[) —(r —r')

for (r —r'[

WH [7] showed that, if a ( d, where d is the number
of space dimensions, and if the pure, nondisordered
system satisfies a modified "Harris criterion, " i.e. , if
2 —av ~ 0, then the critical behavior of the system is
controlled by a disordered fixed point, with a new set
of critical exponents, and in particular with a correlation
length exponent:
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(5)

d, ff = d for point defects,

ff d l for line defects, etc.
Equation (5) is the link which allows us to establish, for
a given defect type, whether the associated strain field is
relevant, in the renormalization group sense, i.e., if the

depend on the penetration depth, which weighs the two
components of the line shape differently. With x rays
(—0.5 p, m), mainly the sharp component will be detected,
while the two features will coexist in neutron scattering
(0.5 cm). This agrees with the observations in Ho [1].
Furthermore, they have shown that neutron experiments
performed in a low-resolution configuration show little
indication of a narrow component, explaining why it had
not been detected before. Both components are clearly
visible in high-resolution neutron-scattering scans.

We note in passing that the modified Harris criterion
suggests that v, is always larger than v. Indeed, if

2 —av ) 0, then v, = 2/a ) v. (3)
In order to test the applicability of these ideas to a spe-

cific system and possibly to identify the nature of defects
which are responsible for the correlated disorder, it is nec-
essary to establish the correspondence between the nature
of defects and the value of a. We consider a mechanism
by which defects induce a local compression or expansion
of the lattice, thereby affecting the local critical tempera-
ture (to an extent which can be estimated from the pres-
sure dependence of T, and from the compressibility of the
system) [9]. For example, a substitutional impurity with
a size misfit with respect to the host induces a radial strain
field which decreases with distance from the defect as r
the same dependence occurs for the long-range strain pro-
duced by a dislocation loop, while a single dislocation can
be associated with a r ' decay law. Let us consider in
general a random distribution of defects of the same type,
with a characteristic exponent a' for the power-law decay
of the associated strain field. The assumed randomness in
the distribution of defects implies that the only origin for
spatial correlations of the type given in Eq. (1) is in the
individual defect properties, i.e., it is associated with the
exponent a'. Considering first the case of point defects,
from the assumed large-distance behavior of g(~r —r'~)
and of BT,. (r) we easily find for the leading behavior at
small k of the respective Fourier transforms

g(k) —k' ", 6T, (k) —k' ", . (4)
where a, a' ~ d is assumed. But since the Fourier
transform of g(~r —r'~) is the square modulus of the
transform of BT, (r), we readily .obtain that (a —d)/2 =
a' —d, or a = 2a' —d. If instead of point defects, line
defects are considered, such as dislocations, the strain
field becomes independent of the coordinate parallel to
the dislocation line. The Fourier transform is performed
in the remaining dimensions only, so that d in Eq. (3) is
to be replaced by d —l. In general we obtain

a = 2a' —d, ff,

R~» + eyy: 2A(xo/I ) sln20 (6)

where A = (b/27r) [(1 —2o.)/(I —o.)], b is the Burgers
vector length and o. the Poisson ratio. Therefore a' = 2,
and according to Eqs. (5) and (2), a = 2 as well, so that

FIG. 1. Schematic view of an edge-dislocation dipole, with
dislocation lines parallel to z and Burgers vectors b parallel to
x, the surface of the crystal being the (xy) plane.

modified Harris criterion is satisfied. If so, it determines
the modified critical exponent for the defective system,
which we propose to identify with v, .

This analysis will be now applied to recent detailed
results for the magnetic spiral phase transition in Ho and
Tb. It is important to notice that in these systems, where
the critical exponent of the broad component, i.e., of the
perfect bulk crystal, is less than 0.6 [1,2], the modified
Harris criterion is satisfied for all values of a up to 3, the
value beyond which the short-range. disorder model and
the unmodified Harris criterion apply. In other words,
long-range strain fields are expected to be relevant for
the critical behavior. Furthermore, as these crystals are
hexagonal, with a ratio of the crystallographic parameters,
c/a —1.58 [1,2] at room temperature, not too different
from the ideal close-packed one, 1.633, the easy-glide
plane is the basal plane [10]. Surface treatments such
as polishing, will induce slipping parallel to the surface.
With a moderate mosaicity, it is plausible to assume that
the dominant kind of defect consists in edge dislocation
dipoles, nearly parallel to the surface (if the latter is
orthogonal to the c axis), but otherwise randomly oriented
in the basal plane (see Fig. 1). Notice that the following
discussion by no means requires that no other types of
defects are present, but only that the others have a shorter
range of spatial correlations, as discussed by WH.

The parameter a' of the dislocation dipole depicted
in Fig. 1 is readily established using the results of
dislocation theory [10]. In fact, if we denote by ~x the
direction of the Burgers vectors of the dipole, and by + xo
the intersection of the two dislocation lines with the x
axis, the trace of the strain tensor at a point belonging
to the (xy) plane and located at a distance r from the
origin and an angle 0 from the x axis is [to lowest order
in (xo/r) « 1]
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in the basal plane by the polishing procedure, as the cause
of this change of the behavior in the sample skin. These
two length scales in the critical fluctuations have been ob-
served in a variety of materials: with magnetic, structural,
second order smooth or sharper transitions. It would be
worthwhile to perform an analogous study for these dif-
ferent systems, looking for the most relevant kind of de-
fects in each case, trying to account for the same type
of phenomenological critical behavior. The differences
between experimental values for the correlation-length
exponents in Ho [I] and Tb [2] should be further ana-
lyzed. Comparison with other critical systems displaying
two length scales, particularly perovskites [4], is presently
under investigation. While we believe that the explana-
tion in terms of disorder-induced modifications of critical
behavior near the surface is applicable in general, the mi-
croscopic nature of the defects involved is certainly differ-
ent for each class of systems. In the case of perovskites
an additional modification of the theory may be neces-
sary because of the weakly first order character of the
transition.

On the theoretical side, there is at least one intriguing
point. Whatever the universality class to which the
pure system pertains, long-range disorder (when relevant)
seems to define a "super-universality-class" fixed point
with the same exponent v, = 2/a for a given correlation
power a. Furthermore, since for perfectly self-similar
disorder (i.e. , same a for all large-length scales), a
is, in general an integer, (e.g. , a = 2 for dipoles), the
superuniversal exponent v, will itself assume only the
values 2, I, or 3 in three dimensions [see Eq. (5)]. This of
course does not hold for ordinary, short-ranged disorder.

The present explanation for the coexistence of the two
length scales, not only is in agreement with the standard
theory of second order transitions, but furthermore sug-
gests that the recent results on Tb and Ho provide, to our
knowledge, the first example of critical behavior modified
by quenched long-range disorder, according to Weinrib
and Halperin's theory.
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