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Unwinding Scaling Violations in Phase Ordering
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The one-dimensional O(2) model is the simplest example of a system with topological textures.
The model exhibits anomalous ordering dynamics due to the appearance of hvo characteristic length
scales: the phase coherence length I —t'/' and the phase ~inding length L —L~. We derive the
scaling law z = 2 + py, where p. = 0 (p, = 2) for nonconserved (conserved) dynamics and g = 1/2
for uncorrelated initial orientations. From hard-spin equations of motion, we consider the evolution of
the topological defect density and recover a simple scaling description.

PACS numbers: 64.60.Cn, 05.70.Ln, 64.60.My

The scaling hypothesis has played an important role
in our understanding of the late-stage ordering dynam-
ics of systems quenched from a homogeneous disordered
phase into an ordered phase region with a broken symme-
try [1]. According to this hypothesis, the order parame-
ter morphology at late times after the quench is statisti-
cally independent of time if all lengths are rescaled by a
single characteristic length scale L(t) This im. plies that
the pair correlation function C(r, t) of the order parame-
ter should depend on its arguments only through the ratio
r/L(t) Recentl.y, we have shown [2] that a natural ex-
tension of the scaling hypothesis to two-time correlations,
C(r, t, t') = f(r/L(t), r/L(t')), supplemented by an under-
standing of the short-distance [i.e., r « L(t)] structure
that follows from any singular topological defects seeded
by the quench [3], determines the late-time growth law
of L(t). Any departure from these growth laws implies a
breakdown of the single-length scaling.

Given the importance of the scaling phenomenology,
it is important to look for exceptions to single-length
scaling, and to try to understand them within a broader
scaling framework. There is evidence that some systems
with nonsingular topological textures may violate conven-
tional single-length scaling. Textures have a spatial ex-
tent, which can, in principle, introduce a new character-
istic length scale. The O(n) model for an n-component
vector field in spatial dimension d = n —1 provides a
class of models with topological textures. Indeed, the
O(3) model in d = 2 seems to have at least one of its char-
acteristic scales growing as I,

" for nonconserved dynam-
ics [4,5], which contrasts with the anticipated t'l~ growth
for this system if scaling holds [2,5].

The O(2) model (or "XY model" ) in spatial dimen-
sion d = 1 is the simplest system with topological tex-
tures. We show through the time-derivative correlations,
T(r, t) = B,B, ~,=, C(r, t, t'), that single-length scaling fails
in this system, for both conserved and nonconserved dy-
namics. The nonconserved case is exactly soluble [6,7]:
One finds that C(r, t) scales with a length scale t't, dif-
ferent from the t'~~ scaling predicted from the scaling
hypothesis [2], and T(r, t) scales with the same length
scale but with an anomalous time-dependent prefactor.

We show, within a general framework, that this discrep-
ancy is due to the existence of two characteristic length
scales, the "phase coherence length" L —t'~, and the
"phase winding length, " L —t' . Since L is the typ-
ical length scale over which the phase changes by order
unity (see Fig. 1), it provides the characteristic scale for
the pair correlation function. The phase coherence length
L drives the dynamics and enters into the two-time corre-
lation functions, such as T(r, t)

In contrast to the nonconserved model, the conserved
model has not previously been addressed except by
computer simulations. The same concepts are relevant to
this case also, however, and by means of a simple scaling
argument we find L —t '/ and L —t '~, the latter in

agreement with recent simulations [7,8].
The issue of scaling in these systems is clarified by

showing that the phase-difference correlation function
G(r, t) (11), rather than the order parameter correlation
function, exhibits a generalized form of single-length scal-
ing with characteristic length L. The topological charge

FIG. l. A section of a system from a simulation using
nonconserved dynamics. Distance along the system is shown
by the scale, and the unit-magnitude order parameter is shown
in the orthogonal plane. The windings of ~27r (textures or
antitextures) of scale L„. and the clusters of monotonic winding
of a larger scale I are evident.
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density, proportional to the phase gradient, provides an
equivalent description that exemplifies the simple scaling
description.

The key elements of this paper are (i) the development
of hard-spin equations of motion for conserved dynamics,
(ii) the simplification of the equations of motion at late
times using the separation of the length scales L and L
(iii) the scaling relations for the length scales, and the
consequent forms for spin-spin correlations C(r, t) and
T(r, t), and (iv) the unifying scaling description in terms
of the topological charge density.

Figure 1 shows a typical configuration generated by a
computer simulation with nonconserved dynamics. The
configuration consists of sections of typical length L
where the order parameter winds in a given sense, al-
ternating with antiwinding sections. The winding length
L is the typical distance between successive windings of
2' in the phase. Since each complete winding (antiwind-
ing) represents a topological texture (antitexture) in this
system, L is the characteristic texture size. During the
phase ordering process, because isolated textures expand
[9], textures unwind by annihilating with adjacent antitex-
tures at the boundaries between regions of positive and
negative winding.

We begin with a heuristic argument relating L and L
Consider a region of length l. If the phase angles in the
initial condition have only short-range correlations, with
correlation length $0, then the initial net winding over the
length i is of order (l/go)'I . Because the total winding is
a topological invariant, the net winding on scales much
larger than the phase coherence length l » L will be
unchanged. At later times, the length l contains of order
l/L sections, each winding in a given sense, with of order
L/L windings per section. The net winding is therefore
(i/$0)' —(L/L ) (l/L)', giving L —(Lgo)'i . (We
assume here that the fluctuations in the total winding per
section are comparable with the mean winding. ) This
indicates that two time-dependent lengths characterize the
system.

We now present an explicit calculation that verifies our
heuristic argument and gives the growth laws for L and
L . It is convenient to formulate the problem in terms of
the U(1) model for a complex scalar field P = p exp(i0).
We take the conventional Ginzburg-Landau free-energy
functional

The purely dissipative equation of motion is

a, (b = —(—a.')~i' 6F/6$*, (2)

where p, = 0 and 2 for nonconserved and conserved
dynamics, respectively. It is mathematically convenient
to take the limit g ~, which imposes the constraint
~@~

= 1, corresponding to a nonlinear sigma model or
"hard-spin" description. This limit is taken by writing

p = exp(i0 —p/g) in (2), expanding in p/g, and re-

where dots and primes indicate derivatives with respect to
t and x.

Consider first the nonconserved case, p, = 0. Equating
real and imaginary parts in (3) gives

(4)

P = (0')'/2. (5)

Thus the phase equation (4) decouples from the amplitude
equation (5), and the amplitude is slaved to the phase.

For the conserved case, p, = 2, the same treatment
yields coupled equations for 0 and p. Motivated by
Eq. (5), we put p = (0') /2 + y, where we anticipate
that y will be negligible at late times. The resulting
equations are

0 (0/)20/I 0/III 2 0/l 4 /0/ (6)

2y// 2(0/)2 + 20/0/II + (0//)2 (7)

It is easy to show explicitly that these equations conserve
the order parameter, i.e., /I/ f dx exp(i0) = 0.

An equivalent approach to deriving the hard-spin equa-
tions (4)—(7) starts from (1) with g = 0 and the condi-
tion ~@ ~

= 1 imposed through a Lagrange multiplier. This
leads directly to (3), 2p being the Lagrange multiplier.

As a consequence of the two length scales in the
problem, the first term on the right of (6) dominates at late
times, so that the phase equation (6) again decouples from
the amplitude equation (7) at late times. The key point
is that while the typical size of 0' is given by 0' —1/L
the spatial variation of 0' occurs on the longer scale L
(see Fig. 2). Thus each higher derivative generates an
extra factor of 1/L, giving 0" —1/LL, 0"' —1/L2L
etc. Thus on the right of (6) 0"" —1/L~L is negligible
compared to (0') 0" —1/LL . Now look at Eq. (7).
Demanding that (0')~y —0'0"' —(0//)~ —1/L~L2 gives
y —1/L2 (and on the left, y" —I /L4 is negligible).
Putting this into (6), we find that the terms involving y
are both of order 1/L3L and therefore negligible at late
times. Thus the first term on the right of (6) dominates at
late times, giving the simplified dynamics

0 = (0')'0"

This equation is one of the central results of the paper,
and represents a significant simplification of the original
equation of motion. Although Eq. (8) no longer conserves
the order parameter at all times, the omitted terms on the
right of (6) are of relative order L /L —1/L, and the
conservation is asymptotically recovered at late times.

taining only terms of order unity. [This method can be
quite generally applied to conserved vector systems by
taking @ = exp( —P/g)@, where ~P~ = 1.] For the 1D
XY model, we obtain

i0 exp(i0) = (—B,)~ [i0" —(0') + 2p]exp(i0), (3)
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0.2

0.
Y'

phase gradient (or topological charge density) correlation
function H(r, t) = (y(x + r)y(x)) = L xh(r/L) ].

The angular brackets in (11) represent an average over
an ensemble of initial conditions. A natural choice of
initial conditions is the Gaussian distribution

-0.
P[0(x 0)] ~ exp Q0„(0)0 «(0)/2o-«, (12)

k

where 0«(0) is the Fourier amplitude of 0(x, O). The pair
correlation function for the order parameter at t = 0 then
takes the form

C(r, 0) = ($(x + r, O)@*(x,0))
= exp( —([0(x +,0) —0(x, 0)] )/2j

FIG. 2. The phase gradient y
—= 0' vs distance is shown

corresponding to the section of the system shown in Fig l.
The characteristic length scales are indicated: L is the average
distance between zeros of 0', while 2~/Lis the ch, aracteristic
magnitude of 19'.

The key step in deriving the growth exponents for L
and L is to transform from the phase variable 0 to
the phase gradient y = O'. Note that p(x) —= y(x)/2~
is just the local winding rate or the "topological charge
density" at point x. Our basic assumption is that, whereas
the order parameter representation sketched in Fig. 1

can never be made scale invariant due to the two
different length scales, the same morphology in the

y representation of Fig. 2 is scale invariant under a
simultaneous rescaling of x by L and y by 1/L
I/Lx (where we anticipate ~ = 1/2 from our heuristic
argument). This is an important generalization of the
standard dynamical scaling hypothesis, and is confirmed
by exact calculation for nonconserved dynamics and by
simulation for conserved dynamics [7).

For compactness, we combine (4) and (8) as the single
equation 0 = (0'2)«"t 0". In terms of y, this reads

y = [(y')' 'y']' (y —= 0') (9)
Making the scale transformations x bx, t b't, y
b xy in (9), and demanding scale invariant behavior gives
our main result,

z =2+ pg. (10)
(Although we have derived this result only for p, = 0 and

p, = 2, the cases of greatest physical interest, we expect it
to hold for general p, ~ 0 [7].)

To determine the exponent g, and to exemplify the
scaling, it is convenient to introduce the squared phase
difference correlation function

G(r, t) = ([0(x + r, t) —0(x, t)] )

I 2(& x1g(r/L) (1 1)
where the scaling form follows from the scaling trans-
formations above and from noting that phase differences
scale as L' x. [Alternatively, we could work with the

= exp —g &r«(1 —coskr) (13)
k

Choosing o-« ——2//ok yields C(r, 0) = exp( —r/ s~)«, ap-
propriate to a quench from a disordered phase with corre-
lation length go. This corresponds to a "random walk" of
the initial phase angles, so that G(r, 0) = 2r/$&&

Now consider the dynamics. Since the topological
charge is locally conserved, the development of phase co-
herence at scale L due to texture-antitexture annihilation
does not affect the phase-difference correlation function
at larger separations r » L, i.e., G(r, t) 2r/$0 in this
limit. Hence from Eq. (11), the scaling function g(x) —x
for x ~, and since L must drop out in this limit we have

X = 1/2

Putting this into (10) gives z = 2 + p, /2, and so
2/(4+ p, )

(14)

(16)
Previous studies of phase ordering systems have usually

concentrated on the pair correlation function C(r, t), and
its Fourier transform, the structure factor 5(k, t) In the.
present context, the phase difference correlation function
G(r, t) is more appropriate, as it reveals the full scaling
structure (11). The scaling properties of C(r, t) can,
however, be inferred. The usual pair correlation function
is given by

C(r, t) = (exp(i[0(x + r, t) —0(x, t)]j)
= (exp(i(ry + r y'/2 + r y"/6 + )), (17)

where the second line follows from the Taylor series
expansion of 0(x + r, t) In the late-time . limit r
L„, ~, with r/L Axed, only the leading term in
the expansion survives, because ry —r/L„, , is of order
unity, while r y' —r2/LL is of order L /L « 1. , and.
the higher terms are smaller still. This limit probes
correlations on the scale L„, since L„, ' sets the scale of
y = 0', so that

C(r, t) = (exp(iry))
= f(r/L-) ~
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where L —t '~ for p, = 0 and t '~ for p, = 2. Because
the structure factor S(k, t) is the spatial Fourier transform
of C(r, t), from (18) we see that S(k, t) = P(k, t), where

P(y, t) is the single-point probability distribution for y.
For p, = 0, the linear dynamics (4) combined with the
Gaussian initial condition (13) ensures that the probability
distribution, and hence S(k, t) and C(r, t) are Gaussian at
all times. The exact solution of the model [6,7] confirms
this feature, with the expected scale length L —t'~ .
For the conserved case, the conservation requires that
S(k, t) vanish at k = 0, implying P(0, t) = 0 in the scaling
limit. Thus P(y, t) cannot be Gaussian in this case, but
must have a double peaked structure. Indeed, numerical
studies indicate [7] that P(y, t) is approximately described
by the form P(y, t) —L3y exp( —const X y L2), and are
consistent [7,8] with the result L —t'i6 derived above.

Time-derivative correlations probe the scaling prop-
erties of the full two-time correlations C(r, t, t'). In
the same limit r ~, L ~ ~, with r/L fixed, we
have T(r, t) =—B,B, I =, C(r, t, t') = (0 exp(i[0(x +
r, t) —0(x, t)]/) = (Y'2y2" exp(iry)), where we have used
Eqs. (4) and (8) for 8. For the nonconserved case, because
the variables are Gaussian and (yy') = ((y2)')/2 = 0, then
T(r, t) = (y'2)(exp(iry)) = (y'2)C(r, t) For the c.onserved
case, the phase variables are not Gaussian, so T(r, t) is
not simply proportional to C(r, t). In both cases, we
use y

—L ' and y' —(LL )
' and the growth laws of

Eqs. (15) and (16) to determine

T(r, t) = t ~+ ~+ f(r/L ), (19)
which breaks dynamical scaling because the time-
dependent amplitude is not proportional to t [2].
Because the phase dynamics involves spatial gradients
of y, the second length scale L is introduced and the
dynamical scaling is broken.

These results can be generalized to a broader class of
correlated initial conditions which includes a conventional
scaling solution. If we take o.

q
—k in (13), we obtain

G(r, 0) —r ', provided 1 ( n ( 3. The requirement
due to local phase conservation that this form be recov-
ered from the general scaling form (11)when r » L fixes

(2o)

z = 2 + p(3 —n)/2, (21)
where we have applied Eq. (10). For p, = 0 we still
have g = 2 with L —t ~ and L —t ~", but for
p, = 2 we obtain g = 5 —u, giving L —t'~ and
L„—L(' t . For a = 1, we obtain G(r, 0)—
lnr, implying a power-law decay of C(r, 0). Simple
scaling is recovered in the limit n 1, since ~ 1

implies that L„and L both grow in the same way, with
characteristic scale L —t'~ for p, = 0, and L —t' 4 for
p, = 2. These growth laws are just what we expect for a
one-dimensional O(2) system with simple scaling [2].

The essence of the "energy scaling" approach that
determines the growth laws for single-length scaling

[2] can be used for an alternative derivation of the
central result (10). In the hard-spin limit, the free-energy
functional (1) becomes F/6] = f dx 0'2. The energy
density is therefore e = (8'2) —L 2 —L x T.his gives
the energy density dissipation rate as

(22)

However, ~ may be independently estimated via

~ = ((BF/60)0)

(g ft2 (g l2) P/2) L
—(2+ 8 )L

—2 L
—[2+x(2+ 9 )]

W

Equating these two estimates gives L —t'~~ +&+~].

To summarize, we have shown that the ordering dy-
namics of the O(2) model in d = 1 involves two charac-
teristic length scales: L —t'~~"+&~ which acts as the scal-
ing length for the order parameter correlation functions,
though T(r, t) and, by implication, C(r, t, t') do not satisfy
standard dynamical scaling, and L —t /~ +& which is the
scaling length for correlations of the phase difference (or
phase gradient). Working with the phase gradient, which
is proportional to the topological charge density for this
system, is necessary to provide a unifying framework.
It is only by considering correlations of the phase dif-
ferences that a simpler scaling description emerges. To
what extent do scaling violations, and/or a simplified de-
scription in terms of the topological charge density, occur
in higher-dimensional texture systems? Numerical simu-
lations on the nonconserved 2D O(3) model indicate the
existence of three different growing length scales, roughly
corresponding to typical texture size, texture-texture sep-
aration, and texture-antitexture separation [5,10]. As yet,
however, no simplifying description analogous to that pre-
sented here has been developed.
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