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Orbital Magnetism in Ensembles of Ballistic Billiards

Denis Ullmo, Klaus Richter, and Rodolfo A. Jalabert

Division de Physique Théorique, Institut de Physique Nucléaire, F-91406 Orsay Cedex, France
(Received 1 November 1993)

We calculate the magnetic response of ensembles of small two-dimensional structures at finite
temperatures. Using semiclassical methods and numerical calculation we demonstrate that only short
classical trajectories are relevant. The magnetic susceptibility is enhanced in regular systems, where

these trajectories appear in families.

For ensembles of squares we obtain a large paramagnetic

susceptibility, in good agreement with recent measurements in the ballistic regime.
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A free electron gas at temperature 7 and magnetic field
H such that kgT > hw (w = eH/mc) exhibits a small
orbital diamagnetic response [1]. This behavior persists
when the electrons are placed in periodic or weak-disorder
potentials [2]. When the system is constrained to a finite
volume, the confining energy appears as a relevant scale
giving rise to finite-size corrections to the Landau suscep-
tibility. These corrections have been the object of sev-
eral theoretical studies in the last few years for the case
of clean [3] and disordered [4] systems, and received re-
newed interest with recent experiments of Lévy et al. [5]:
Measurements on an ensemble of 10° microscopic, phase-
coherent, ballistic [6] squares lithographically defined on
a high mobility GaAs heterojunction yielded a large para-
magnetic susceptibility at zero field, decreasing on the
scale of approximately one flux quantum through each
square. These experiments have been important in orient-
ing the theoretical studies toward the physically relevant
questions associated with the magnetic response of small
systems. In particular, the role of finite temperature and
the necessity of distinguishing individual from ensemble
measurements appear as important ingredients that have
been overlooked in some of the theoretical literature.

In this Letter we calculate the orbital magnetic suscep-
tibility of noninteracting electrons at finite temperatures in
regular geometries (i.e., squares and circles) for individual
systems as well as for ensembles. We use a semiclassical
approach treating the magnetic fields involved by classi-
cal perturbation theory and confirm the validity of our as-
sumptions and analytical results with numerical quantum
calculations. We show that regular microstructures exhibit
strongly enhanced susceptibilities with respect to the Lan-
dau value due to large modulations in the density of states
caused by families of periodic orbits. Finite temperature
induces a cutoff on the length of the relevant trajectories,
and therefore clean systems provide a good description of
the ballistic regime. These are the experimental condi-
tions of Ref. [5], and therefore our model yields results in
good agreement with the measurements. We compare the
results for ensembles of regular geometries with those of
chaotic billiards, finding important quantitative differences
which should be experimentally observable.
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We consider an ensemble of isolated two-dimensional
systems at temperature 7. For each member of the
ensemble (with N electrons and area V) the magnetic
susceptibility x is given by the change of the free energy
F(T,N, H) under the effect of a magnetic field,
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The necessity of using the canonical ensemble for isolated
mesoscopic systems, and the physical differences with
the grand-canonical ensemble (GCE, where the system
responds to the magnetic field with a fixed chemical
potential u), are some of the important concepts that
recently emerged in the context of persistent currents
[7]. On the other hand, calculations in the GCE are
more easily performed due to the simple form of the
thermodynamic potential

QT . H) = —% [ B p@ nat + expipu — B,
@

in terms of the single particle density of states p(E) =
—(2/7)Img(E). The factor of 2 takes into account spin
degeneracy, B = 1/kgT, and g(E) is the trace of the
Green function Gg(r',r), i.e.,

g(E) = ferE(r,r). 3)

Separating p into a mean and an oscillating part,
p(E) = p°(E) + p>¢(E), we define a mean chem-
ical potential u° from N = [dEp(E)f(E — ) =
JdE p®(E)f(E — u®. (f is the Fermi-Dirac distribu-
tion function.) Considering that p®¢ < p°, it has been
shown that [8]

F(N) = F° + AF) + AF®@), )
where FO = N + Q%w0 and AFD = Qo¢(u0). We
define Q0 and Q°° by using, respectively, p® and p*°
instead of p in Eq. (2). The second-order term is [8]
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FY is field independent to leading order in a semiclassical

expansion. Higher order terms in % give rise to the two-
dimensional diamagnetic Landau susceptibility —y, =
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—e?/(12rmc?) (as can be shown even for constrained
geometries [9]). AF( gives the susceptibility in a GCE
with chemical potential u°. In disordered systems it
vanishes under impurity average, and we will show that
it is also the case within the energy and size averages of
our model. We therefore have to consider the next order
term AF®,

To obtain a semiclassical expression for AF(1), AF®,
and their magnetic field derivatives we calculate p*°
from the semiclassical expansion of the Green function.
Except for a logarithmic singularity when r’ — r, which
yields the smooth part p° of p, the semiclassical Green
function has the generic form [10]

ot Soma[F-(n- D3] o

where the sum runs over all classical trajectories ¢ joining
r to r’ at energy E. S, is the action integral along
the trajectory. For billiards without magnetic field we
simply have S,/h = kL,, where k = v/2mE/hi and L, is
the length of the trajectory. The amplitude D, takes care
of the classical probability conservation, and 7, is the
Maslov index.

Within our semiclassical approach, the free energy
corrections are given as sums over classical trajecto-
ries, each term being the convolution in energy of the
semiclassical contribution (oscillating as kL,) with the
Fermi factor (smooth on the scale of 8~!). It can be
seen [9] that the contribution of a given trajectory to
AF®Y at finite temperature is reduced with respect to
its T = 0 counterpart by a multiplicative factor R(T) =
(L;/L¢)sinh~'(L,/L,), with L. = h?kzB/(rm). A factor
R*(T) is needed for AF®. At high temperatures R(T)
yields an exponential suppression of long trajectories.
Therefore y is dominated by trajectories with L, = L.,
which will be the only ones considered in our analysis.
L. provides a cutoff length in the semiclassical expansion
Eq. (6), in a similar way as the phase-coherence length
Lg associated with inelastic processes. If L. or Lg are
much smaller than the shortest classical orbit, y reduces
to the Landau susceptibility independently of the nature
of the classical dynamics.

The standard route to obtain p°° from Gy is to evaluate
the integral of Eq. (3)) by stationary-phase approximation.
This selects the trajectories which are not only closed
in configuration space (r’ = r), but also closed in phase
space (p’ = p), i.e., periodic orbits. When these latter
are [well] isolated the Gutzwiller trace formula [10] is
obtained. For integrable systems, periodic orbits come in
continuous families corresponding to the rational invariant
tori (Balian—Bloch and Berry—Tabor formulas [11,12]).
For regular geometries the H = 0 dynamics is integrable.
However, y is the response to a perturbing magnetic
field which usually breaks the integrability. Thus using
the Berry-Tabor formula is certainly inadequate. On the
other hand, for H — 0O the remaining periodic orbits are
not sufficiently well isolated to apply the Gutzwiller trace
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formula. Therefore, a uniform treatment of the perturbing
field is needed, where not only orbits that are closed in
phase space are taken into account, but also trajectories
closed in configuration space which can be traced to
periodic orbits when H — 0.

In squares (of side a), due to the simplicity of the
geometry, such a uniform treatment is possible since
we can perform the corresponding integrals exactly.
For H = 0, 7, is twice the number of reflections, and
D, = a/(kL,)"? with @ = —m/(v/27k%). One way to
obtain this result is to use the method of images writing
Ge(r',r) = Go(r',r) + Z,; €,Go(rl,r), where G2 is the
free Green function, r; are the mirror images of r’ by any
combination of symmetries across the sides of the square,
and €; = =1 depending on the number of symmetries
needed to map r’ on r;. The long-range asymptotic
behavior of the two-dimensional free Green function
GR(r},x) = aexplilklr] — r| — 7/4)]/KkIr] — ¥)"/? can
be used for the images [13].

For sufficiently weak magnetic fields, one may keep
in Eq. (6) the zero-order approximation for D, and use
the first-order correction 6S to the action. For a closed
orbit enclosing an algebraic area A, classical perturbation
theory yields 86S = (e/c)H A for low fields and high
energies, such that the cyclotron radius of the electrons
is much larger than the typical size of the structure.

We now specify the contribution p;; [to p®°] of the
family of closed trajectories which, for H — 0, tends to
the family of shortest periodic orbits with nonzero en-
closed area. We note it (1,1) since the trajectories bounce
once on each side of the square (upper inset, Fig. 1).
Their length is L;; = 2+/2Za. This family gives the main
contribution to the experiment of Ref. [5] since L. = 2a
at T = 40 mK. Therefore, to simplify the discussion of
the results, we shall in the following also consider that
L. = L,;. We stress, however, that the contributions of
other families can be obtained in essentially the same way
as the (1,1) contribution. Moreover, strong flux cancella-
tion occurring for other primitive orbits makes their con-
tribution irrelevant in the case of the square, even for very
low temperatures [9,14].

In order to calculate the trace integral of Eq. (3) we use
as space coordinates xy, which labels the trajectory (see
inset, Fig. 1) and s the distance along the trajectory. Then
the area is simply A .(xg) = €2xo(a — xg), with the index
e = *1 specifying the sense of motion. Inserting A
in Eq. 3) we have p;(H) = py(H = 0)C(H), where
pu(H =0) = —(8/m)a’asin(kLy, + w/4)/(kL1y)'/? is
the unperturbed contribution and

CH) = éfo dx cos (}?—ijo(a - x0)>

1
= [cos(m@)C (/) + sin(me)S(/7e)].
Ve %)
C and S are, respectively, the cosine and sine Fresnel
integrals, and ¢ = ®/® is the total flux ® = Ha? inside
the square measured in units of ®y = hc/e.




VOLUME 74, NUMBER 3

PHYSICAL REVIEW LETTERS

16 JANUARY 1995

200 T T
y
100 |- l
-
>
NN 0
>
6 H
—100—50\./,’\.[\
-x_ab\‘x‘/z(;v‘/z;
-200 L
20 40 60 80 100
kea

FIG. 1. Magnetic susceptibility of a square as a function of
kpa at zero field and a temperature equal to 10 level spacings,
from numerical calculations (dashed), and from semiclassical
calculations (solid). The period 7/+/2 indicates the dominance
of the shortest periodic orbits enclosing nonzero area with
length L,; = 2+/2a (upper inset). Lower inset: amplitude of
the oscillations (in krL;;) of y as a function of the flux through
the sample from Eq. (8) (solid) and numerics (dashed).

To obtain the contribution of the family (1,1) to
AFD = Qo°(u% and AF® we have to evaluate the
energy integrals of Eq. (2) and Eq. (5) using pq;(H) for
the density of states. At 7 = 0, the Fermi distribution
is a step function. Since p;; is a rapidly oscillating
function without any stationary-phase point the integrals
are dominated by the boundary contribution at the Fermi
energy. For finite temperatures the smoothing of the
Fermi function results in the factor R(T) previously
introduced. For the susceptibility y(! arising from AF®
one obtains in leading order in kra

X(l)

3 .
o = Tt (ke +

w) d*C
XL

Z d_(,DzR(T) .
(3

Therefore, the susceptibility of a given square can be
paramagnetic or diamagnetic (Fig. 1), and its typical
magnitude is much larger than the Landau susceptibility
x.- Clearly, YV vanishes under average if the dispersion
of kra across the ensemble is of the order of 27. The
average x is then given by the contribution of the (1,1)
family to AF®

8% 3 d*C?

- = - kpa

XL (2 m)? de?
The average susceptibility (solid line, Fig. 2) is paramag-
netic at H = 0 and for low fields it oscillates with an over-
all decay of 1/¢. For ensembles with a wide distribution
of lengths (in the experiment of Ref. [5] the dispersion
in size across the array is estimated between 10% and
30%) the dependence of C on a (through ¢) has to be
considered. Since the scale of variation of C with a is
much slower than that of sin?(krL,;), we can effectively
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FIG. 2. Thin solid curve: average magnetic susceptibility for
an ensemble of squares from Eq. (9). Thick solid curve:
average over an ensemble with a large dispersion of sizes (see
text). Thick dashed curve: average from numerics. The shift of
the numerical with respect to the semiclassical results reflects
the Landau susceptibility [due to F° in Eq. (4)] not included
in the latter. Inset: average susceptibility as a function of kra
for various temperatures (4, 6, and 8 level spacings) and a flux
¢ = 0.15, from Eq. (9) (solid) and numerics (dashed).

separate the two averages and obtain the total mean by
averaging the local mean given by Eq. (9). The low-field
oscillations of () with respect to ¢ are suppressed under
the second average (performed for a Gaussian distribu-
tion with a 30% dispersion, dashed line, Fig. 2), while the
zero-field behavior remains unchanged.

We checked the semiclassical results by calculation of
the first 1500 eigenenergies of a square in a magnetic
field by direct diagonalization. At 7 = O the free energy
reduces to the total energy and y is dominated by
big paramagnetic singularities at the level crossings of
states belonging to different symmetry classes and at
small avoided crossings between states with the same
symmetry [3]. These peaks are compensated once the
next state is considered, and therefore disappear at finite
temperature where the occupation of nearly degenerate
states becomes almost the same. Temperature regularizes
the 7 = O singular behavior, and, of course, describes
the physical situation. We include it by calculating
the partition function Z = exp[—BF] from a recursive
algorithm [9,15].

The results for individual squares are in excellent agree-
ment with Eq. (8), the oscillations as a function of kzLj;
and ¢ clearly shown in Fig. 1. The oscillations in ¢ can
be regarded to be analogous to the well known de Haas-
van Alphen oscillations of the bulk susceptibility due to
quantized electronic cyclotron motion. However, the for-
mer explicitly reflect the finite size of the microstruc-
ture. At the level of the averages the quantum values also
nicely agree with our analytical findings (Fig. 2).

Reference [5] yielded a paramagnetic susceptibility at
H = 0 with a value of approximately 100 (with an un-
certainty of a factor of 4) in units of y,. The two
electron densities considered in the experiment are 10!
and 3 X 10" cm™2, corresponding to approximately 10*
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occupied levels per square. Therefore our semiclassi-
cal approximation is well justified. For a temperature of
40 mK the factor 4+/2/(57)kraR*(T) from Eq. (9) gives
zero-field susceptibility values of 60 and 170, respec-
tively, in good agreement with the measurements. The
field scale for the decrease of (x(¢)) is of the order of one
flux quantum through each square, in reasonable agree-
ment with our theoretical findings.

Squares constitute a generic example of an integrable
system perturbed by a magnetic field. It is interesting
to compare our results with two extreme cases: circles
(which remain integrable under the perturbation) and
completely chaotic systems. Expressing the Hamiltonian
of a circle (of radius a) in action-angle variables [16],
p®¢ can be written as a sum over families of periodic
trajectories [12]. Within our finite-temperature approach
we restrict ourselves to the shortest ones, the whispering-
gallery trajectories who turn only once around the circle

in coming to the initial point after M bounces. Their
contribution to p®° is
- eH
pualH) = 3 putH = 0)cos(2ay ) (10)
M=3 ¢

pu(H =0) = 8mL} /(JTh*ky*M?) sin(kpLys + /4 —

37wM/2) and the length of the Mth trajectory is
Ly = 2Masin(ar/M), while the enclosed area is
Ay = (Ma?/2)sin(2mr/M). The susceptibility y" oscil-
lates as a function of kra with an amplitude proportional
to (kra)3/? (consistent with Ref. [17]) and vanishes under
ensemble average. (y(H = 0))/xr = 5.3kra. The sums
over M are rapidly convergent, indicating the dominance
of the first few periodic orbits.

Squares and circles give the same dependence on
kra for x and (x). This is the generic behavior for
integrable systems [9] and can be traced to the (kpa)~!/2
dependence of p°°. For chaotic systems (of typical
length a) with hyperbolic periodic orbits the Gutzwiller
trace formula provides the appropriate path to calculate
p*°(E,H). For temperatures at which only a few short
periodic orbits are important, y can have any sign, and its
magnitude is of the order of (kra)y, [18]. Extending this
analysis to the case of an ensemble of chaotic systems,
we obtain (x) = y.. The individual y are larger, by
a factor (krpa)!/?, in regular geometries than in chaotic
systems [19]. For () the difference is even of the order
of kra. These differences are due to the large oscillations
of p in regular systems induced by families of periodic
trajectories.

The different magnetic response according to the ge-
ometry does not arise as a long-time property (linear vs
exponential trajectory divergences) but as a short-time
property (family of trajectories vs isolated trajectories).
This assures that small variations in the geometry will
not be relevant since they affect only long trajectories.
For the same reason the effect of weak disorder scatter-
ing in the ballistic regime can be treated as a correction
to our results for clean systems [9].
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The different kra dependence predicted for the sus-
ceptibility in regular and chaotic cases should result in
an order of magnitude effect. Therefore measurements
in different geometries will be of high interest and pro-
vide a crucial test of the applicability of our noninteract-
ing model to actual microstructures.
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