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Whirling Modes and Parametric Instabilities in the Discrete Sine-Gordon
Equation: Experimental Tests in Josephson Rings
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We analyze the damped driven discrete sine-Gordon equation. For underdamped, highly discrete
systems, we show that whirling periodic solutions undergo parametric instabilities at certain drive
strengths. The theory predicts novel resonant steps in the current-voltage characteristics of discrete
Josephson rings, occurring in the return path of the subgap region. We have observed these steps
experimentally in a ring of 8 underdamped junctions. An unusual prediction, verified experimentally,
is that such steps occur even if there are no vortices in the ring. Numerical simulations indicate that
complex spatiotemporal behavior occurs past the onset of instability.

PACS numbers: 05.45.+b, 03.20.+i, 74.40.+k, 74.50.+r

Many physical and biological systems may be regarded
as collections of coupled nonlinear oscillators [1]. In
particular, Josephson junction arrays have recently been
studied from this point of view [2—6]. A one-dimensional
parallel array of W identical junctions is governed by the
damped, driven, discrete sine-Gordon equation:

QI + I @, + sin @, = I + A (@,+) —2@) + @,

for j = 1, . . . , N. Here @, is the phase difference across
the jth junction, I is the damping (= p, 'I2 with p, the
McCumber parameter), I is the drive (normalized dc bias
current), and A is the coupling (normalized Josephson
penetration depth). The dot denotes differentiation with
respect to ~~t, where cu„ is the plasma frequency.

Equation (1) also arises in the Frenkel-Kontorova model
of dislocations [7] and in models for ferroelectric and mag-
netic domain walls. A mechanical analog for (1) is a chain
of N pendula, each of which is damped, driven by a con-
stant torque, and coupled to its nearest neighbors by tor-
sional springs. Despite its physical significance, not much
is known about the dynamics of (1). The available studies
suggest that the behavior can be extremely complicated,
even for N = 2 pendula [8—10].

This Letter presents analytical and numerical studies of
(1), for underdamped (I ( 1), highly discrete (A ~ 2)
systems. We also test our predictions experimentally,
using a discrete ring of N = 8 Josephson junctions.

First we recall the properties of a single pendulum
[11]. If we slowly increase the torque I from I = 0,
the pendulum moves away from the downward vertical
to a new static equilibrium angle P = sin ' I. When
I ) 1, the pendulum whirls according to some function

P = P"(t), where P*(t + T) = @'(t) + 2' and T is the
rotation period. Let V = (@) denote the time-averaged

angular velocity [12]. Then V increases with I, for I ) 1.
Now suppose we decrease the torque. If the damping is
sufficiently large, the pendulum will retrace its original
I-U curve, becoming motionless as I approaches 1 from
above. On the other hand, if the pendulum is sufficiently
underdamped, the I-U curve exhibits hysteresis; because
of inertia, the pendulum keeps whirling even if I ~ 1,
until it finally stops at some value I„(1. Thus this
"return portion" of the I-V curve approaches U = 0 as
I ~I, .

Next consider a ring of N pendula governed by (1).
The ring geometry introduces a topological constraint,

@,+~ = @J + 2~M, (2)

uj + lug + [cos@ (t))uJ = A 7 uJ, (3)

where V LEj: Qj+l 2' + Hj —] The boundary condi-
tions are periodic: u, +& = uj.

As long as I is not too close to I„, the whirling solution
may be approximated by P*(t) = tot, where to = 27r/T
Expand u, (t) as a discrete Fourier series in space: u, (t) =

where M is the number of twists or vortices trapped in
the ring. [Without loss of generality, M can be restricted
to M = 0, . . . , (N/2) due to a symmetry of Eqs. (1) and

(2).] M is determined by the initial conditions, but it
remains constant as the system evolves. We will see that
the dynamics of (1) depend strongly on M.

The simplest case is M = 0. If I ( 1, the system has
a stable static solution with all the pendula in phase:

pj = sin ' I for all j. However, for I ) 1, the pendula
start whirling; now the stability of the in-phase solution is
less clear. To determine its stability, let @;(t) = P'(t) +
uj(t), where u, (t) is a small perturbation. Then
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oA (t)exp(2vrimj/N). Then the modes decouple:

A + IA + [cu + cosset]A = 0,

for m = O, . . . , N —1, where cu = 2A~ sin(m~/N)~ is
the lattice eigenfrequency of mode m.

Equation (4) is a damped Mathieu equation. It is
known [13,14] that A (t) grows exponentially for certain
values of the parameters, in which case the in-phase
whirling solution is unstable to the growth of mode m. In
physical terms, the in-phase solution can destabilize itself
by parametrically exciting the normal modes of the lattice,
i.e. , by exciting "phonons" [15].

These parametric instabilities occur only at certain ro-
tation frequencies co that resonate with the lattice eigen-
frequencies, namely, neo/2 = cu, where n = 1, 2, . . . is
an index that labels the Mathieu tongues [13,14]. In
our numerical experiments, we see only the n = 1 res-
onance: cu = 2' [16—18]. This resonance occurs for
each m = 0, . . . , N —1, but at most N/2 + 1 of these can
be observed since ~N

To test these predictions, we have measured the I-V
characteristics of a ring of N = 8 niobium Josephson
tunnel junctions. The parameters A and I can be
measured and controlled experimentally. Moreover, the
number of vortices in the ring can be controlled; when
cooling down through the niobium transition temperature
in a field of about M Aux quanta applied to the ring,
exactly M vortices will be trapped. Experimentally [6] we
observed five distinct I Vcurves (i-.e., for M = 0, . . . , 4);
the I-V curve with N —M trapped vortices is the same
as that with M trapped vortices, consistent with the
symmetry of the model. We also refer to [6] for more
details about the sample and the experimental setup.

Figure 1 shows the I-U curve of a Josephson ring with
M = 0 (no vortices in the ring). Starting from I = 0,
the array remains in the superconducting state up to I =
37 p, A, where the jump to the steep gap region occurs.
The upgoing part of the I-V is smooth, indicating that the
whirling solution is stable. When I is decreased, there

is hysteresis in the return path, and current steps occur at
0.93, 0.71, and 0.35 mV. As shown in Fig. 1, there is even
hysteresis when biasing on these smaller steps.

The inset of Fig. 1 shows the voltage position of the
steps as a function of the mode number m. The volt-
age is normalized to Vo = 4ocuo/2', where coo = Ace„ is
a characteristic, temperature-independent frequency corre-
sponding to the speed of light in the Josephson ring. As
shown in [6], Vo can be measured accurately and equals
0.25 mV for our ring. The solid line in the inset is the
predicted resonance frequency cu = 2', no fitting pa-
rameters were used. We find close agreement between
the data and our model.

So far, we have neglected the width of the Mathieu
tongues. In fact, mode m is unstable for all cu in some
interval [cu, co+]. For the tongue n = 1, perturbation
theory [14,19] yields cu2+ = (4co2 + 2)/(1 + I ~), valid
for 1 « ~ & 1/I . Numerical computation was used to
check this formula, and to estimate ~ . In Fig. 1 the in-
tervals [~,su+] for m = 1, . . . , 4 are shown as horizontal
bars. The predicted intervals contain the observed steps,
but they are smaller than the observed intervals. Also, the
m = 4 step is missing in the experiment. We suspect that
near the stability boundaries, thermal noise kicks the sys-
tem out of the in-phase state prematurely.

Figure 2 is a numerically generated I-V curve for N =
10 junctions [20]. Four resonant steps, corresponding
to m = 1, . . . , 4, are resolved by sweeping I up and
down several times. The predicted instability intervals
for modes m = 1, . . . , 5 are also shown. The intervals for
m = 4 and 5 partially overlap, whereas the other intervals
are separated by tiny gaps where the in-phase solution
regains stability. At the right end of each interval,
there is a sudden jump from the whirling solution to
another attractor. In contrast, the bifurcation at the left
end appears to be supercritical; a resonant step branches
continuously from the in-phase solution [21].

The dynamics along a step can be complicated. As
an example, we consider the m = 3 step of Fig. 2 at the
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FIG. l. Experimental I-V curve for M = 0 showing three
resonant steps in the return path. The whirling in-phase
solution is predicted to be unstable in the horizontal intervals.
Inset: dots, measured voltage positions of the steps vs mode
number m; solid curve, theoretical estimate cu = 2' (see text).

v/v,
FIG. 2. Numerical I Vcurve for (1) with-N = 10, M = 0,
A2 = 1, I = 0.1. The in-phase solution is predicted to be
unstable in the intervals m = 1, . . . , 5. Attractors for a—e on
the m = 3 step are shown in Figs. 3(a)—3(e), respectively.
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term. The amplitudes satisfy

A +to A +e(e' 'A,„M+e ' 'A ~M)=0,
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FIG. 3. (a)—(e) Phase portraits for the five points marked
in Fig. 2, plotted in Lissajous-like representation. (a) I =
0.29, (b) I = 0.35, (c) I = 0.365, (d) I = 0.53, (e) I = 0.62,
and (f) time series of spatial Fourier amplitudes lA (t)I for (d).

points marked "a" through "e." Figure 3(a)—3(e) plots
sin Pi (t) versus sin @(t), where P = g, , P, /N. Fig-
ure 3(a) shows the stable in-phase solution. The corre-
sponding point a in Fig. 2 is in the tiny gap between the
m = 2 and m = 3 intervals. As I is increased, the solu-
tion period doubles [Fig.3(b)] as expected from Mathieu
theory [13,14], but then it does not follow a period-
doubling route to chaos. Instead we see a secondary Hopf
bifurcation to a 2-torus [Fig. 3(c)],transition to an irregular
motion [Fig. 3(d)], reversion to a 2-torus [Fig. 3(e)], col-
lapse to a different period-doubled limit cycle (not shown),
and a jump back to the in-phase whirling solution at I =
0 67NI, (Fig. 2.).

The irregular state corresponding to Fig. 3(d) is also
spatially complex. Figure 3(f) shows the magnitude
IA (t)l of spatial modes m = 1, . . . , 5. The mode m = 3
is the most active since the system is on the m = 3 step.
The mode m = 1 seems to fluctuate aperiodically.

We have studied the dynamics on the other steps and
found both generic and step-dependent features. Gener-
ically, the dynamics become simple (either periodic or
quasiperiodic with two frequencies) near the onset and near
the top of the steps. Near the onset, the solution is approxi-
mately in phase, with a small-amplitude mth mode super-
imposed. Near the top of a step, the fluctuation amplitude
becomes large. The dynamics here can be described by
m interacting kink-antikink pairs. In the middle, the be-
havior is step dependent; the solutions can be complicated,
as above, or quasiperiodic with two frequencies, as on the
m = 4 step. Some of the steps contain substructure, e.g. ,
the m = 1 and m = 2 steps of Fig. 2.

Finally we turn to the case M ~ 1. The whirling
solution is given by @,"(t) = cut + 2~Mj /N. To study
its linear stability, we substitute this P,'(t) into (3), use the
same Fourier expansion for u, , and neglect the damping

where a = 1/2 is treated formally as a small parameter.
This equation is more complicated than (4) because
the modes are coupled. Using the method of multiple
time scales [14,17,22], we find [19,23] that the onset of
instability occurs at

~m + ~m+M — k~m~m+MJ x
—1/2
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FIG. 4. Experimental I-V curve for M = 1. Both axes are
normalized. Horizontal bars are instability intervals predicted
by (5). Inset: dots, measured voltages of the steps vs mode
number m; curve, theoretical estimate cu = cu + cu +M of (5).

Thus the resonances occur at co + co +M, with an O(e)
correction. As before, the plus (minus) sign corresponds
to co+ (cu ). In contrast to M = 0, the instabilities
arise here from Hopf bifurcations [19]. The slow second
frequency is approximately a(cu cu +M)

We have also measured the onset of instability for
M = 1 in our Josephson ring. Figure 4 shows that for low
voltages a resonant step occurs at V = 0.75VO. As shown
in [6], this is the region where the vortex is accelerated up
to the speed of light in the system. At I = 0.35M„ the
jump to the gap region occurs. Three resonant steps are
visible in the return path, but they now occur at different
voltage positions from M = 0. The inset of Fig. 4 plots
the measured voltages of the resonant steps, along with
the prediction of Eq. (5) for M = 1. Again, no fitting
parameters enter the analysis. There is good agreement
between the data and our model.

In numerical simulations for M = 1, similar steps are
obtained [19]. Their positions are well explained by
Eq. (5) and, as predicted, supercritical Hopf bifurcations
occur at their onset cu = ~ . The dynamics once again
become complicated in the middle of a step and simple at
the top, where kinks and antikinks are interacting.

The results are qualitatively unchanged for M ) 1.
Resonant steps are observed experimentally, and their
locations are explained by our theory. Such agreement
for all M suggests that the Josephson rings investigated
here are promising model systems for further studies of
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the discrete sine-Gordon equation and its spatiotemporal
dynamics.
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