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Monte Carlo Wave-Function Analysis of 3D Optical Molasses
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A full quantum treatment of laser cooling in three dimensions is performed. It is based on a recently
developed Monte Carlo wave-function technique, which reduces an otherwise unmanageable density
matrix problem by at least a factor of 10 in computing requirements. For different atomic transitions
and temporal phases of the laser beams, our calculated mean kinetic energies are in good agreement
with experimental results. Momentum distributions are shown to develop escape lines when the optical
molasses is close to disintegration. Spatial distributions are also calculated and discussed.
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By laser cooling it is possible to obtain samples of
atoms with kinetic energies in the microkelvin range
[1,2]. The underlying mechanisms have been identified
in one-dimensional (1D) models [3,4] in which the atomic
center-of-mass motion, subject to fluctuating radiative
forces, is treated classically. This led to the scaling law
for the atomic mean kinetic energy Etc ~ ItIBIs, where
6 denotes the (negative) detuning of the laser frequency
with respect to the atomic transition frequency 6 =
coL —co~. We have introduced the saturation parameter
s = 2IAI2/(462 + I ~), where I is the decay rate of the
excited state and II is the Rabi frequency (atom-laser
coupling amplitude). The same scaling laws are found
when this semiclassical analysis is applied to cooling
in three dimensions [5—8], and in treatments taking
proper account of spatial localization, even quantitative
agreement with experiments is observed [7].

This treatment does not apply in too weak laser fields,
where the measured temperatures increase abruptly after
going through a minimum. A quantum formulation of the
problem leads [9], in the limit of large detunings, to a
universal law for the mean kinetic energy,

EK /ER.. = f(It I
&

I s/2ERg ), C (I)
where the recoil energy, ER„= (hk) /2M, has been
introduced, with k being the laser wave number and M the
atomic mass. The function f depends only on the angular
momentum quantum numbers of the atomic transition and
on the laser configuration, and it leads to a minimum
energy proportional to ER„The function .f and the
minimum kinetic energies were determined in 1D [10] and
in 2D [11].

In this Letter we report on quantum calculations per-
formed in 3D laser cooling. The conventional starting
point for such a calculation is the master equation for
the atomic density matrix p, representing the quantum
states of the electronic and center-of-mass degrees of free-
dom. The number of elements of p is proportional to
the square of the number of points in a grid covering
the center-of-mass momentum range. For example, for

I p;I ~ 20hk, i = x, y, z, and a discretization of Itk we
get (2 && 20 + l)6 = 5 x 109 elements, a number which
should be multiplied by the number of matrix elements
relative to the atomic electronic states. A direct integra-
tion, like the one in 2D [12] can therefore not be per-
formed. A reduction to rate equations for the diagonal
elements of p in a proper basis was applied in 1D and 2D
[10,11]. In 3D the condition for this approximation is not
fulfilled for typical experimental parameters.

With this type of problem in mind we have recently de-
veloped a general formulation of dissipative problems in
quantum optics replacing the density matrix by stochas-
tic wave functions [13—15). Inspired by other problems
in quantum mechanics and quantum optics, other authors
have developed similar formulations [16—19].

We now outline our application of this method to 3D
laser cooling. The time evolution of a single stochastic
wave function is characterized by intervals of Hamilton-
ian evolution interrupted by random quantum jumps ac-
counting for the spontaneous emission of photons. We
introduce the ground and excited state components of the
atomic state vector Itits) and IP, ), obeying the coupled
linear equations

&I' —h~ —iver/2 Iy, &+ I«'&Iy, &,dt (2M
(2)

hd', I~.&
= 2'MIA&+ V( )I~ & (3)

Here, p denotes the atomic momentum operator, and I
enters explicitly as a damping term in the evolution of
IP, ). Equations (2) and (3) are obtained in a rotating
frame where the atom-laser interaction is written in

-+ (+)
the rotating wave approximation as V = —D[+~ - FI +
H.c., with D~+~ being the raising part of the atomic dipole

(+)
operator and FI the amplitude of the positive frequency
component of the laser electric field.

The state vector also undergoes quantum jumps at
instants chosen according to the current spontaneous
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emission rate dP/dt = I (g, lg, )/(Pl/). The emission of
a photon with a polarization ~~ and a wave vector k~

corresponds to a change of the state vector

and it has a relative probability ill@)„-, ; ll . The expo-
nential factor containing the position operator R of the
atom translates the atomic momentum by the recoil mo-
mentum —Fik&, the operator sz D~ ~ projects the atom
onto the ground state, and the evolution proceeds from
here according to Eqs. (2) and (3). Although the calcu-
lations can be performed with the exact dipole pattern for
spontaneous emission [14], we have simplified to emis-
sion of photons along the coordinate directions e, ey and
e„only. This is justified by the widths of the calculated
distributions being several hk.

To identify the optimum laser cooling we shall use
the fact [1,2] that polarization gradient cooling is most
efficient at low saturation s && 1, to adiabatically elimi-
nate the excited state. Neglecting p2/2M as compared
to hl'/2 and putting dig, )/dt = 0 in Eq. (2), we obtain

lf ) = (&& + ilti /2) 'V~ ~lP~). When inserted into
Eq. (3), this introduces the effective ground state po-
tential operator (h6 + ill /2) ' VI ~V~+&. Since V is
proportional to AA„, we have, in this way, made appear
frequencies -l6ls (light shifts) and damping rates —I s
(optical pumping rates), which we require to be much
smaller than I for consistency with the elimination of
lP, ). This procedure removes the short times I/6 and
1/I, so that time steps, longer by a factor —I/s, may be
applied in the integration of Eq. (3).

We now take the laser configuration to be a super-
position of fields propagating along the coordinate axes.
We expand the center-of-mass components of the wave
function on a set of states with momenta p = po(t) +
I k(inn~, n, ), where n„nY, and n, are integers. Indeed,
an initial momentum eigenstate will, at any later times,
have an exact expansion on these states, and with the
simplified emission pattern described above, po(t) can
be set to 0 at all times. In practice, we have to limit
the momentum grid, and we consider it sufficient to take
—20 ~ n, ny, n, ~ 20 for calculations of momentum dis-
tributions with p;, , ~ 76k, i = x, y, g, the maximum
considered in this paper.

The integration of Eq. (3) with
l P, ) = (66 +

ill /2) 'V~ llPg) follows a splitting technique. To ob-
tain the wave function

ling (t + dt)) from the value at time
t, we first multiply components of momentum p by the ki-
netic energy phase factor exp( —ip~dt/2Mb). Second, we
approximate the propagation due to V by a fourth order
Taylor expansion in powers of dt, requiring l6lsdt ( 1.
The first neglected terms due to the splitting are pro-
portional to [p /2M, V~ lV~+~/(h6 + ill /2)](dt/&)
(kpdt/M) l6lsdt, and this puts an additional criterion on
the maximum allowable time step dt. In our calculations
we applied a time step of dt = 0.025(I s)

The Monte Carlo wave-function method is a simula-
tion technique, and the restriction to a finite number of
state vectors leads to error bars on our results. Sup-
pose that at time t, n independent wave functions lP;(t))
have been evolved, and that the expectation values a; (t) =
(P;lAlf;)/(P;lP;) of an atomic operator A have been cal-
culated for the n wave functions. The sample mean of the
a s, (a) = (g", , a;)/n, then gives an approximation to the
exact mean value, Tr[p(t)A], with a statistical error esti-
mated by Ba/~n, where (6a)2 is the sample variance of the
a s [14]. The statistical error will therefore be represented
in our figures by error bars with a half-width Ba/~n.

Here, the atomic density matrix p(t) converges to a
steady state p" within a time 7. of order the relaxation
time of the mean kinetic energy. In the Monte Carlo
simulation, the wave functions have no steady state, so
that each expectation value a;(t) keeps fluctuating with
time. In the derivation of steady-state mean values, one
may, however, replace the variables a;(t) by their time
average a; on a time interval »~. An approximation of
Tr(p "A) is then derived from the sample mean of the a s,
with a statistical error Ba/~n, where (Ba)2 is the sample
variance of the a; s. For the interaction times considered,
this time averaging procedure leads to Ba —Ba/3, for
A = p2, mimicking an increase in the number of wave
functions by a factor of 9.

Measurements of temperatures in 3D optical molasses
have been performed on jg j, = jg + 1 atomic transi-
tions, with jg = 2 and jg = 3 in two isotopes of Rb [2]
and with j~ = 4 in Cs [1]. We present results for these
three types of transitions, and for jg = 1. Also, we re-
strict ourselves to one closely investigated laser configu-
ration, the so-called lin J lin configuration, defined by the
electric field

FL (t ) = —[e'@'(e~e'"' + e, e '"')~+~-

+ e'~'(e, e'"~ + e, e '
)

+ e'~:(e,e'"' + e, e '"')]. (5)

The amplitude Eo is included in the Rabi frequency 0, =
dFo/it, where d is the atomic dipole moment.

In Fig. 1 the mean steady-state kinetic energy of the
atoms F» is shown as a function of the parameter 6 l mls/2,
for laser phases (0, 0, 0) and a detuning of 6 = —5I .
We recover the characteristic functional dependence of
E~ described in the introduction. For a large light
shift, F» = altl6ls/2 + bER„. For decreasing values of
the light shift, E& goes through a minimum and then
increases sharply, indicating the existence of a threshold
for polarization gradient cooling to be effective. We
note the dependence of E& on the angular momentum

jg, the largest values of jg giving rise to the coldest
atomic distributions. The slope a and the minimum
mean kinetic energy are given in Table I, as functions
of jg, together with experimental values for jg ) 1 The
number of Monte Carlo wave functions ranges from 6
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FIG. 1. Mean kinetic energy as a function of light shift for the
atomic transitions jg ~ j, = j, + 1, j, = 1, 2, 3, and 4. The
laser field configuration is given by (5) with @, = P, = P, =
0, and the atom-laser detuning is 6 = —5V.

to 12. In the affine regime, the points were obtained
with an interaction time of 400(I s) ', with the temporal
average performed over the last 200(l s) ', whereas close
to threshold, relaxation times get longer and interaction
times up to 800(I s) ' were considered. The calculation
per point required the equivalent of 10 to 50 h on a
Cray C90 computer. In the experiments quoted above,
the phases of the six laser beams were not controlled. In
order to validate our comparison with the measurements
we have extended our jg = 2 calculations to the phase
(0, ~/3, 2'/3). Within our error bars the minimum
kinetic energy and the slopes are the same as in Fig. 1.

The Monte Carlo wave functions provide much more
information than shown in Fig. 1. An aspect of laser cool-
ing which has received much interest [20,21] is the pos-
sibility to form spatially periodic atomic distributions. In
Figs. 2(a) and 2(b) we show position distributions calcu-
lated for two different sets of phases. We interpret the
observed localization in terms of the spatial variation of
the laser fields. In the case of vanishing phases, the elec-
tric field on the line x = y = z is linearly polarized. The
maximum intensity is obtained on this line at (x, y, z) =
(0, 0, 0) and at (A/2, A/2, A/2). But, because circularly
polarized light interacts more strongly with jg ~ 0
j, = jg + 1 transitions (Clebsch-Gordan coefficients), it
may be advantageous for the atoms to localize at a dis-
tance from this line, where a larger fraction of circu-
larly polarized light is present. This qualitatively explains
the doughnut-shaped distributions shown in Fig. 2(a), a
shape also obtained in semiclassical calculations [7]. The

TABLE I. Results of Fig. 1 ("calc," vanishing phases) and ex-
perimental results ("meas, " uncontrolled phases) for the mini-
mum kinetic energy and for the slope a (see text).

FIG. 2. Atomic position distributions in the cell —A/2 (
x, y, z ( A/2, for a j„=2 j„=3 transition, with
6~6~s/2ER„= 30 and 6 = —51. The probability of find-
ing the atom within the surfaces of constant density shown
is 1/4. The corresponding enclosed volume is 6% for (a)
(vanishing phases) and 8% for (b) [phases (0, 7r/3, 2~/3)].

situation for the case of (@„@~,P, ) = (0, 7r/3, 2'/3)
is completely different. Now, the maximum intensity
is obtained in the points (x, y, z) = (A/6, 2A/3, A/6) and

(2A/3, A/6, 2A/3), where the light is circularly polarized.
It follows that the optically induced potential wells have
absolute minima here and, indeed, atoms are localized
around these points; see Fig. [2(b)].

Also, fast atoms may localize within the plane per-
pendicular to their velocity. For example, for the set of
phases (0, vr/3, 2'/3) we have identified lines through the
points of maximum intensity and with direction (1, 1, 1),
where the light has a constant circular polarization [or-
thogonal to (1, 1, 1)], and where the localization of atoms
with high velocities along (1, 1, 1) is likely to occur. As
the polarization is constant here we expect a less efficient
cooling of these atoms and therefore an anisotropy in the
momentum distribution. In a two-dimensional optical lat-
tice this anisotropy leads to escape channels for the atoms
for sufficiently small light shifts 6~6~s [12].

Below the value of light shifts leading to the minimum
kinetic energy we get a momentum distribution as exem-
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(a)

FIG. 3. Momentum distribution for a jg = 2 ~ j, = 3 transition, with h~6jjs/2FR„= 5 and 6 = —5I', and for the phases
(0, 7r/3, 27r/3). The plotted isodensity surfaces correspond to 1/15 (a) and 1/50 (b) of the maximal density. Similar results
are obtained for vanishing phases.

plified in Fig. 3. The central part of the distribution is
essentially isotropic; in an intermediate range [Fig. 3(a)]
we recover the expected anisotropy along (1, 1, 1) giv-
ing rise to a leman-shaped isodensity surface, and in the
far wings [Fig. 3(b)] further escape lines are visible. In
fact, escape lines may exist in all directions n with trans-
verse cooling, i.e., orthogonal to two Fourier components
k, —k~, k, —kb of V~ ~ V~+~, the k's being wave vec-
tors of the laser beams. The relative importance of the
escape lines, however, is difficult to assess when they are
not associated to constant circular polarization.

In conclusion, we have shown that the Monte Carlo
wave-function method applies successfully to the problem
of 3D laser cooling. Mean kinetic energies in good agree-
ment with the experimental values have been obtained,
and we have discussed features of the cooled distributions
which have not yet been measured. The low level of sta-
tistical uncertainty on our results was beyond our expecta-
tions and strongly relies on the time averaging procedure.
This brings promises for further applications within this
field, and we are currently investigating nonperiodic prob-
lems, appearing in connection with spatial diffusion and
neutral atom traps.
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