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Gaussian Model for Chaotic Instability of Hamiltonian Flows
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A general method to describe Hamiltonian chaos in the thermodynamic limit is presented which
is based on a model equation independent of the dynamics. This equation is derived from a
geometric approach to Hamiltonian chaos recently proposed, and provides an analytic estimate of the
largest Lyapunov exponent A. The particular case of the Fermi-Pasta-Ulam P-model Hamiltonian is
considered, showing an excellent agreement between the values of A predicted by the model and those
obtained with computer simulations of the tangent dynamics.
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N

M(q, p) = g ' + V(q), (1)
2m

where V(q) is a nonlinear interaction potential among
N particles with mass I, positions q = q', . . . , q~, and
momenta p = p', . . . , p~.

For most of the interesting choices of V(q) —apart
from some remarkable exceptions, like the Toda lattice
model —Hamiltonian (1) is nonintegrable and the corre-
sponding equations of motion

d q' BV
(2)dt2 Bq;

'

exhibit chaotic, i.e., unpredictable, behavior despite their
deterministic nature. One of the most interesting features
of these Hamiltonian models is the presence of a transition
from a weakly to a strongly chaotic regime when the
energy per particle is increased, and numerical results
suggest that this transition is stable in the thermodynamic
limit N ~ ~ [1]. The degree of chaoticity of Eqs. (2)
can be quantified by the largest Lyapunov exponent A,„,
which, roughly speaking, is a measure of the mean rate
of exponential divergence between nearby orbits. The
rigorous definition of Lyapunov exponents can be found
elsewhere [2]. Here we rather deal with an estimate A

of A,„which, for Hamiltonian systems of the form (1),
is defined as follows: First the equations of motion (2) are
linearized along a generic trajectory yielding the evolution
equations

d 8 V+ gJ (3)dt2 Bq; Bqi
for the variations g = g', . . . , g~ of the coordinates (sum-
mation over repeated indices is understood throughout the

i =1, . . . , N,

Many problems and applications ranging from the
general theory of dynamical systems to plasma and
condensed matter physics are represented in terms of
many degrees of freedom Hamiltonian systems of the
form

paper and m = 1 is also assumed); then A is given by

114(t)II

114(0)ll
'

where 11/11 is the Euclidean norm of g.
An algorithm to compute A was developed by Benettin,

Galgani, and Strelcyn [3]. Numerical analysis based on
this algorithm shows that the transition between weak and
strong chaos can be detected by a scaling crossover of A as
a function of the energy per degree of freedom e = E/N
[1].

Simple algebraic manipulations of Eqs. (3) lead to the
equation
1 d'llgll' a'V, , dllgll &'

2 dt2 8 '8 ~ dt )

(5)

where p, = g/11/11. The term containing dp/dt can be
neglected [4], and by standard substitutions [5] we arrive
at an evolution equation for the norm 11/11 having the form
of a generalized Hill equation

d2$
+ Q(t)/=0, (6a)

8 V

&q'&q' llgll llgll
'

where I til I is proportional to 11/ 11.

The present work aims at obtaining an analytic expres-
sion for A in the limit N ~. At first sight this goal hits
against a major obstacle: Q(t) has to be computed along a
dynamical trajectory [Eqs. (6) are coupled to Eqs. (2) and
(3)]. Hence Eq. (6a) can be useful to compute A only if
we are able to model Q(t) by a function which is indepen-
dent of the dynamics. The main point of this Letter is to
show how such a model can be actually formulated using
the differential geometric structure underlying dynamics.
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The dynamics described by Eqs. (2) is equivalent to a
geodesic fIow on a Riemannian manifold. In fact, both
the dynamical trajectories and the geodesics of a Rie-
mannian manifold are derived from a variational princi-
ple. The variational principle for dynamics is Hamilton's
(or Maupertuis's) least action principle stating that the
trajectories are the extrema of the action functional. The
geodesics of a Riemannian manifold are defined as the

Bextrema of the arclength functional Zqii = f„ds, where
ds = g~, dq~dq' is the Riemannian metric. Hence a
suitable choice of the ambient manifold and of its met-
ric tensor g makes a correspondence between action and
arclength such that the geodesics are identified with the
dynamical trajectories [6]. In this geometric framework,
the natural tool to tackle dynamical chaos is the Jacobi
equation for geodesic spread [7]

——J~+ R,„g J" =0,dq dq
(7)ds ds ds ds

describing the evolution of geodesic deviation vector
field J, often referred to as the Jacobi field. This
is a local stability equation for the geodesics. Here
V/ds is the covariant derivative along the geodesic and
R is the Riemann curvature tensor. Throughout the
paper, Greek indices run from 1 to 3V, where 3V is
the dimension of the Riemannian manifold, and Latin
indices from 1 to N which is the dimension of the
configuration space (in general 3V ~ N). The vector
field J plays for the geodesic fiow the same role that the
variation vector g plays for the dynamical trajectories.
ln previous papers [8,9] it has been shown that for a
particular choice of the metric g, due to Eisenhart [10],
the dynamics (2) can be interpreted as a geodesic fiow in
an (N + 2)-dimensional manifold with local coordinates
q, q', . . . , q, q +'. q is a time coordinate, q', . . . , q
belong to configuration space, and q~+' is related to
the action. Direct computation of Eq. (7) for Eisenhart
metric leads exactly to Eq. (3) after renaming J', . . . , J
as $', . . . , $ . An equation describing the evolution
of the norm ((J(( = Qg~, J&J" naturally follows from
Eq. (7) and can be cast in the form of a generalized Hill
equation as in the case of Eq. (6):

d2$
+ K(s)P =0, (8a)

J~ dq" J" dq

IIJII d
where /Pf is proportional to /fJf/. Here K(s) is the
sectional curvature relative to the plane spanned by J
and dq/ds [11]; K(s) is the generalization to high-
dimensional manifolds of the usual Gaussian curvature of
two-dimensional surfaces. In the case of Eisenhart metric
the arclength parametrization is affine, i.e., ds = C dt
with C a constant, and the only nonvanishing compo-
nents of the curvature tensor are Ro;0, = 82V/Bq'Bq'.
Hence K(s) =—Q(t)/C2, with Q given by Eq. (6b), ))J([ —=

and Eq. (8a) gives just Eq. (6a). The solutions

of Eq. (8) can be exponentially growing —thus imply-
ing chaos —under two circumstances: Either the sec-
tional curvature K is negative along the geodesics, or
it oscillates, fulfilling the conditions for parametric in-
stability. The former case is considered in ergodic the-
ory: Following the geometric approach it is possible to
obtain rigorous proofs of ergodicity and mixing for ab-
stract dynamical systems for which all the sectional cur-
vatures are negative. This is the case of Anosov fIows
[2]. On the other hand, it is found that curvatures are
mostly positive for generic Hamiltonians of the form (1),
provided that V is a binding potential with minimum,
therefore parametric instability plays a crucial role to
make chaos in conservative dynamical systems of phys-
ical interest [8,9].

Now we are going to exploit the fact that using
Eisenhart metric Eqs. (8) lead to Eqs. (6) up to a time
reparametrization ds = C dt . In particular, we can take
advantage of the fact that Q(t) in Eq. (6b) is the sectional
curvature K(s) in Eq. (8b) to find a model equation for
((g(~(t) independent of the details of the dynamics (i.e.,
of computer generated trajectories). First of all, at large
N and with generic, i.e., random, initial conditions, we
assume that —for a nonintegrable system K(s) is well
represented by a random process of the form

K(s) = (K), + (a'K),'"~(s), (9)
where the averages are taken along a geodesic, i1(s) is a
normalized Gaussian noise with zero mean, and (62K)'t2
is the rms fluctuation of E. The next step is a suitable
estimate of mean and variance of the random process
(9): Here the geometric nature of Q(t), i.e. , Q(t) —=

C2K(s), comes in to help. With the aid of an elementary
result in Riemannian geometry, a rough estimate of K can
be obtained. This involves Ricci curvature K~ which is
defined by [7]

dq~ dq'
Kg —= R~, (10)

ds ds
where R„, is the Ricci tensor. At each point of the mani-
fold the mentioned estimate gives [8] K = K~/(3V—
1) = Kg/N at large N Such a replacemen. t is a point-
wise average of the sectional curvatures that can be inde-
pendently defined at each point. The replacement would
be exact for a class of manifolds called isotropic —or con-
stant curvature —manifolds. Therefore, in order to get rid
of the dependence of K(s) upon the evolution of J/~(J~~,
we replace K by Kz/N; this is the "zeroth order" ap-
proximation of K(s). Then to account for the fluctuations
described by the second term on the right-hand side of
Eq. (9) it is natural to use the fiuctuations of Ricci curva-
ture and to replace Eq. (9) by

K(s) = (K ), + —(6 K ),'t 71(—s), (11)

which is now independent of J; nevertheless, it still
depends on the dynamics because the averages are taken
along a geodesic. Now, since we want to estimate
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the largest Lyapunov exponent, i.e., a time-asymptotic
quantity which should not be affected by the details of
the dynamics, we replace the averages ( ), over a generic
geodesic with statistical averages over a microcanonical
measure ( )~. Our estimate of the sectional curvature K
is thus rewritten as

K(s) = —(K ) + —(8 K ) 7)(s). (12)

For many models of physical interest K& ) 0, hence
a major source of chaos in this picture is parametric
instability.

Now, inserting Eq. (12) into Eq. (8a) and using the
arclength parametrization ds2 = C2dt2, from Eq. (6) we
obtain a model equation for P in the form of a random
oscillator

(13)

where y(t) is no longer a dynamical observable as Q(t) is,
but a Gaussian random process —y(t) —= C2K(t) —whose
mean yo and variance o-~ are

(14a)

(14b)

where we have also defined the symbols (k~)~ and (6 kz)z.
In the case of Eisenhart metric the only nonvanishing
component of the Ricci tensor is Roo = LV, where 4
stands for the Euclidean Laplacian, thus C KR = D, V.
In the above definitions the probability measure is, as
previously stated, a microcanonical distribution so that for
any observable A

jd~q d~qAB (A —E)
(A), = j d~q d~q 8 (9f —E)

(15)

Thus the quantities (14) can be computed independently
of the dynamics.

The process y(t) is not completely defined unless its
time correlation function I ~(t~, t2) is given. The simplest
choice is to assume that y is a stationary 6-correlated
process, i.e.,

(rl r2) = 1,(lri —r21) = r o,' ~(lti —r21),

where ~ is a characteristic time which we estimate with
the aid of geometry. On a curved surface a typical
length scale is the curvature radius p, which is related
to the curvature IC by p = 2/IC; on a constant curvature
3V -dimensional manifold (e.g. , an 3V sphere) p
2(3V —1)/K~. According to our Gaussian model (14),
an average curvature radius is p~ = 2C /yp and another
length scale, related with fiuctuations, is pq = ypC /2o. .
Hence, using ds = C dt, two characteristic time scales
are given by T~ p

= p~ 2/C, and we obtain a characteristic

time as 7- ' = 7.
t

' + 7-2 ', i.e.,

4yo
A(yp, o.~, r) = — A—

2 3A
(19a)

64yo + o-472
27

A= o. 7. + (19b)

Let us now apply our Gaussian model to a particular
case, the Fermi-Pasta-Ulam (FPU) p model defined by the
Hamiltonian

N

+ —(q;+i —
q )' + —(q;+i —q;)'

i=1

(20)
The reason for this choice is twofold. First, Hamiltonian
(20) allows the analytic computation of all the quantities
entering Eqs. (19) in the limit N ~ ~, and one can com-
pare the result for A with numerical estimates obtained by
the algorithm of Ref. [3]. Moreover, the FPU model ex-
hibits the transition from weak to strong chaos, which is
marked by a scaling crossover in the dependence of A on
the energy density e = E/N The explicit exp. ression for
kR in the case 20 is( )

kR =2+ g(q+, —q)
6p,

N, (21)

The quantities we need are the microcanonical averages
(kz)z and (6 k~)~. From the computational point of
view it is easier to use the Gibbs canonical measure

()o, because the partition function for the FPU one-
dimensional chain is known [13]and in the thermodynamic
limit the results are equivalent. In fact, (kz)z = (kz)G +
6(1/N) and (6 kR)E = (8 k~)o + F + 6(1/N) where
F is a corrective term which does not vanish in the
thermodynamic limit and can be computed by means of
Gibbsian averages [14]. The results are expressed in terms
of the parameter 0 = Qp/2p, , where p is the inverse
temperature, and a relation between the energy density
e = E/N and the parameter 0 allows one to obtain the

o.
~ + . (17)

'J/p 2o j
Equation (13) admits exponentially unstable solutions

whenever y(t) has a nonvanishing random component
[12]. The asymptotic rate of exponential growth of the
solutions will provide our estimate of A. Thus we put

A = lim —ln
ly(&) I (18)~-™r $0

where P is the solution of the stochastic differential equa-
tion (13), and ~P(t)(/(P(0)( can be computed through the
evolution of the second moments of P. Such evolution
is readily obtained by means of a method due to Van
Kampen [12] and yields —through Eq. (18)—the follow-
ing expression for A:
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10' =:

-5

10'
10' 10' 10' 10' 10'

results as functions of e (see Ref. [9] for details). The
relation between e and 0 is

e(il) = +—1(3
and the formulas for (ktt}z(0) and (6 kR}F(II) are

3 D- /. (|I)
(kR}g(0) = 2 +-

O D, /, (e)
'

(22)

(6 k } (0) =—2 —2II
D-t/2(~)

D,/, (e)
D- t/2(tJ)

+ F(e), (24)

where D, are parabolic cylinder functions. According to
Ref. [14] we find the correction F(0) in the form

1 (ae(9)) '(BikR)(8))'

where Be/BO and B(k }/ttBO are computed from Eqs. (22)
and (23). The explicit expression of the time constant r
in the case of the FPU chain is obtained from Eq. (17) by
substituting 70 with (ktt}~ given by Eq. (23) and cr~ with

(6 kR}z given by Eq. (24).
Substituting Eqs. (23) and (24) and the expression of 7.

into Eqs. (19) yields an analytic expression of A(e) for the
FPU model, valid in the N ~ ~ limit (see Fig. 1). From
this expression one can easily determine the asymptotic be-
haviors of A(e), A(e) —e as e 0, and A(e) —e'I as
e ~ Go. The crossover between the two power laws oc-
curs at e —0.12/IL, thus confirming also in the thermo-
dynamic limit the value of the energy threshold between
weak and strong chaoticity already estimated in Refs. [I]
and [9].

(25)

FIG. 1. Largest Lyapunov exponent A vs energy density e =
E/N for the FPU P model with p, = 0.1. The analytic result
obtained from Eq. (19) (solid line) is here compared with
the values obtained by computer simulations of the tangent
dynamics —Eq. (3)—with N = 256 (full circles).
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