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Computational Study of Many-Dimensional Quantum Energy Flow: From Action Diffusion
to Localization
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Many-dimensional quantum calculations of energy How are presented, revealing dynamical scaling
in agreement with theoretical predictions. A model system of coupled anharmonic oscillators which
undergoes a localization transition as a function of coupling strength was studied. For strong coupling,
action diffusion is clearly seen. For near critical coupling, the average survival probability varies
inversely with time but shows no simple relationship to the average extent of the spread of the wave
function in action space.
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The problems of the origin of chaos and irreversibility
in quantum mechanical systems are under intense investi-
gation today. The analytical tools of semiclassical analy-
sis and random matrix theory have led to many interesting
conjectures about these problems which have been tested
through detailed quantUm mechanical calculations on sys-
tems having few dimensions [1]. These same problems
have had a long fascination for chemical physicists in their
quest to understand how energy flows in molecules. The
extent and rate of energy flow in a molecule is important in
determining the validity of statistical theories of reaction
rates and for understanding the spectra of highly excited
molecules [2]. The typical energy liow problem differs
from the model problems previously studied in quantum
chaos theory, primarily in being a problem of rather high
dimensionality. High dimensionality provides both new
phenomena and new limits for understanding chaos and ir-
reversibility. New analytical tools are important for under-
standing the problem, and computational approaches typi-
cally have been difficult to apply. Building on recent com-
putational progress, in this paper we present calculations
on a many-dimensional quantum system which mimics
many features of molecules. We find agreement with re-
sults of recent theories [3,4] which connect the problem of
quantum localization and energy Row in high-dimensional
systems with the problem of Anderson localization in
disordered solids [5,6].

Energy fIow in molecules predominantly occurs
through a series of Fermi resonances between nonlinear
oscillators. In classical systems the overlap of different
Fermi resonant regions leads to chaotic dynamics and a
global energy liow [7]. The universal classical mecha-
nism for weak energy Row is Arnold diffusion which also
arises in many-dimensional systems through numerous
resonant overlaps. Quantum mechanical calculations
also implicate Fermi resonances in global energy How

[8,9]. The Fermi resonance mechanism implies that

energy transport is local in quantum number space: Only
states which have nearly equal quantum numbers in the
unperturbed representation are directly connected. This is
the basis of the analogy to Anderson localization. Using
an approximate mean field theory, Logan and Wolynes
studied the energy transport in a quantum mechanical
many-dimensional Fermi resonant system with random
frequencies for the unperturbed oscillators [3]. Their
theory suggests that in a high-dimensional quantum
mechanical system there is a phase transition from having
localized quantum states to delocalized quantum states
in which energy can flow freely through the molecule.
This transition occurs when the Fermi resonant coupling
is comparable in magnitude to the inverse of the local
density of states, the density of those states directly
coupled to a given state. At the transition there is critical
behavior of the rate of energy flow. Significant differ-
ences from the naive golden rule estimate of the energy
Bow rate are obtained at high values of the coupling
strength. Using the general notion that the transport can
be described using local random matrix models, Schofield
and Wolynes later presented scaling arguments for energy
flow, which suggest that in the strongly delocalized
regime the dynamics is diffusive on the constant energy
shell in quantized action space [4]. This perspective uses
an analogy with the classical action diffusion earlier de-
rived for resonantly interacting harmonic oscillators [10]
and which has been shown to occur in low-dimensional
chaotic systems [11]. The scaling arguments suggest also
that near the transition, quantum coherences of different
classical paths lead to rather slower energy transport,
using reasoning modeled upon the scaling theory of
Anderson localization [6]. Although these molecular
analyses share the action diffusion picture with theories
of quantum chaos in the kicked rotor [1,12], they differ
significantly from those theories which use the Anderson
localization concept in its one-dimensional incarnation,
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which lacks a sharp transition at nonvanishing coupling
strength.

At the same time as these analytical developments, con-
siderable progress has been made in the computational
attack on the quantum energy flow problem. The devel-
opment of the RRGM algorithm [13] and the Chebyshev
time propagation [14] have made it possible to study en-

ergy flow in specific molecules such as 21 mode benzene
[15]. It is now possible to study the quantum transport
in the more abstract many-dimensional Fermi resonant
model used in the analytical theories. Atkins and Logan
have qualitatively interpreted numerical studies on a three
oscillator system using the Anderson transition analogy
[9]. In this paper we present quantitative computational
evidence for the transition in higher-dimensional systems.
We discuss the way in which energy transport varies with
the coupling strength and focus on the scaling behavior of
the average survival probability in the many-dimensional
Fermi resonance system.

We consider quantum energy transport in a model
anharmonic system involving N = 6 Morse oscillators
coupled through cubic interaction terms. In mass-scaled,
approximately normal coordinates the total Hamiltonian is

N
1 2H=g P+D—(1 —e "~)

+3, P QQPQ, (1)
n, P,yEnn

The triple sum is over all nearest-neighbor combinations,
with modes 1 and 6 coupled. The fixed dissociation energy
for the Morse potentials is D, = 4 eV and the a are cho-
sen such that each harmonic frequency v = a $2D, /2'
falls randomly in the interval [1000 cm ', 1004.4 cm '],
giving an average of v = 1002.2 cm '. This model serves
as a local random matrix example, representative generally
of molecular systems with a homogeneous isotropic state
space [16]. The basis functions used for the matrix rep-
resentation of H are direct products of Morse oscillator
functions, ~m, ) = P, ~v~'~). The quantum number for
each mode assumes the values 0, 1,...,v „,so that the di-
mension of the direct product space is d = (1 + v „)
At time t = 0, the initial wave packet 9"(0) was chosen as
one of the 252 basis functions with five quanta, such as
)0))3))1))0))0))1);for later averaging of dynamical quanti-
ties, the time dependence of each member of an ensem-
ble was computed. Converting to the approximate alge-
braic coupling strength @' = (6/47r v)3t P, application of
the localization criterion of Ref. [3] gives an estimate of
@,' = l.2 cm ' [17]. Calculations were carried out for
nine values of P'/@,' in the range 0.635—6350, selected
at logarithmic intervals. Throughout the text and figures
log = log ) p.

Two time-dependent dynamical quantities were com-
puted for individual initial states. These are the survival
probability, S(t), and the extent of the spread of the wave
function in action space, R(t) S(t), the absolute .square

of the amplitude of finding the time evolving wave packet
overlapping the initial wave packet, is accessible experi-
mentally either directly or, using Fourier transform tech-
niques, via the spectrum [18]. S(t) was computed by
evaluating the residues of the Green function at the ex-
act eigenenergies. In the N-dimensional quantized action
space, each axis represents the various quantum numbers
for one of the Morse oscillators and each basis state for
the N-oscillator system is represented by a lattice point.
If np denotes the initial lattice point at t = 0, then for
t ) 0 the extent of the spread of the wave packet in action
space is measured by the dimensionless quantity R(t) =
(p(t)~ (n —no) ~'P(t))'t . In order to compute R(t), we
need the amplitudes c, = (m, ~W(t)), the projections of the
time evolving wave packet upon the various multimode ba-
sis functions. In these studies, the maximum single mode
quantum number is v „=6, so that the dimension of the
direct product space is d = 117,649. In order to reduce
the size of this basis set, modes 1 —3 were merged with an
energy cutoff of 5921 cm ' and modes 4—6 were merged
with the same energy cutoff, resulting in a contracted basis
of 3136 states.

S(t) was efficiently computed with the recursive residue
generation method (RRGM) [13]. The RRGM algorithm
employs the Lanczos method to iteratively construct a
relatively small tridiagonal matrix representation of the
Hamiltonian. The number of Lanczos recursion steps
required for convergence ranged from 700 to 2500,
depending on the coupling strength. The QR algorithm
was then used to extract the residues and eigenvalues
from this tridiagonal matrix. The survival probabilities
were calculated for all 252 initial conditions, to obtain
P(t) = (S(t)) [»]

To compute R(t), a different and more computation-
ally expensive procedure was followed. The amplitudes
were evaluated by expanding the propagator in Chebyshev
polynomials [14], with about 40—440 expansion terms,
depending on the time step. The total time range AT
varied between 10 fs and 125 ps, depending on the cou-
pling strength. Because of the computational expense, the
wave function extents were calculated for a representative
subset of 18 randomly chosen initial conditions, to obtain
L(t) = (&(t)) l19].

Figure 1 shows the results of the calculations. The
increase in the long time value of P(t) with decreasing
coupling strength reveals the influence of the localization
transition, as does the large change in the long time value
of the average extent of the wave function when the
coupling strength changes from just above to below the
critical value [20]. Four types of dynamics are exhibited
in Fig. 1. First, for strong coupling, cases (a) —(c), a
consistent decay of P(t) and increase of L(t) occurs. The
decay of P(t) appears linear on the log-log scale for
intermediate times. For case (d), the long time values of
P and L have started to change. Then, for cases (e)—(g), a
partial recurrence, which loses amplitude with decreasing
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FIG. 1. The average survival probability P and the average
wave function extent L as a function of time, on a log-log
scale, for different coupling strengths @'. Note that the scale
for log(L) is offset by 0.5. The values of log(@'/P, ') are (a)
3.8; (b) 3.3 ; (c) 2.8; (d) 2.3; (e) 1.8; (f) 1.3; (g) 0.8; (h) 0.3;
and (i) —0.2. v is the harmonic frequency.

FIG. 2. Diffusional scaling. Shown as a function of time are
P, the average survival probability, and L ', L the average
wave function extent, on a log-log scale, for three values
of the coupling strength in the strongly delocalized limit,
log($'/@,') = 2.8, 3.3, and 3.8. The power law fit to P(t)
appears as a straight line of slope m = —5/2. The diffusion
coefficient is D = 11$'/R

coupling strength, appears in P(t) at roughly t = 1/v,
accompanied by a temporary leveling of L(t). Next, near
the transition, for case (h), the decay of P(r), which occurs
principally after t = 1/v, appears linear on the log-log
scale for intermediate times, but with a smaller slope than
for strong coupling. Finally, on the localized side of the
transition, for case (i), the dynamics change dramatically.
L(r) always remains less than unity, indicating that the
wave function remains almost entirely in the initial state.
Also, P(t) in no way reIIects the dynamics for individual
initial conditions, which are highly oscillatory. In forming
the average, these oscillations add incoherently to form a
smooth decay of P(t).

Figures 2 and 3 show comparisons of the computational
results with the theoretical prediction in the strongly
delocalized limit and near the transition, respectively.
The model of action diffusion on the surface of constant
total energy used in the limit of strongly delocalized
eigenstates, predicts [4]

P(r) —L '(r) —(Dr) '/', (2)
with 5 = s —1, the dimensionality of the constant energy
surface and s = 6 the number of oscillators. Near the
transition to localized eigenstates, the Schofield-Wolynes
scaling analysis gives [4]

P(r) —L '(r) —(cur)

Here ~ is a microscopic frequency which depends on
the local density of states per unit volume. Both power
law decays of P(r) are predicted to occur for times when
1 ( L ~ L „,with L „the long time value set by the
finite size of the state space. Figures 2 and 3 show clear
agreement with the predicted power law decays of P(t)
in Eqs. (2) and (3), over 1 —1.5 orders of magnitude.
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FIG. 3. Critical scaling. Shown as a function of time are P,
the average survival probability, and L ~, L the average wave
function extent, on a log-log scale, for 1 (os'/P, '. ) = 0.3. The
power law fit to P(t) appears as a straight line of slope m = —l.
The microscopic frequency is cu = 28 cm

Note that although Fig. 3 contains results for several
different coupling strengths, all can be fit with the same
formula for the diffusion coefficient D = 11@'/h. This
is close to the Logan-Wolynes prediction, D = 14@'/R
[3,17]. This linear dependence was first seen by Bigwood
and Gruebele and confirmed by Ilk, Topaler, and Makri
in related calculations which model specific molecules
[21]. It contrasts with the quadratic dependence of the
decay rate on coupling strength predicted by the golden
rule, based on the assumption of weak, global coupling.
Note also that for the value of co used to fit the critical
power law decay in Fig. 3, D/cu = 1, using D = 11@'/6,
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the result from the diffusion fit for strong coupling.
This reflects the proximity to the localization transition.
Figure 2 shows that in the strongly delocalized limit for
the same range of time over which P(t) follows the power
law decay, it is paralleled by L 5(t), clearly supporting the
diffusion picture. That is, agreement is seen with all parts
of Eq. (2). Also at long times the equality P,„=L
holds. In contrast, Fig. 3 shows that near the localization
transition P(t) and L (t) bear no similarity at any time,
in disagreement with the first part of Eq. (3). This
lack of simple geometrical scaling near the localization
transition may rellect multifractal critical eigenstates [22],
but further investigation would be necessary to support
the connection.

In summary, evidence has been presented for simple dy-
namical scaling behavior of quantum energy flow for a
model system of many anharmonic oscillators with non-
linear local couplings, exhibiting localization as a function
of coupling strength. This contrasts with the dynamic lo-
calization of kicked rotors [1,12]. Although it is difficult to
compare the results to those of classical calculations, due
in part to the well-known zero point energy effect [23],pre-
liminary work suggests more rapid classical energy Aow.
Experiments are, of course, the final desideratum in de-
tecting the scaling behavior of many-dimensional energy
How in molecules. However, so far it has proved difficult
to find a tuning parameter, such as the coupling strength in
the calculations presented here, in an individual system. In
some circumstances external fields or imposed overall ro-
tation could play the role of such tuning. In any event, we
believe large scale calculations in combination with scal-
ing ideas are fruitful in uncovering the range of behavior
available to individual systems, such as isolated molecules,
with anharmonic motions.
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