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Linearly Positive Histories: Probabilities for a Robust Family of Sequences of Quantum Events
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Non-negative probabilities that obey the sum rules may be assigned to a much wider family of sets of
histories than decohering histories. The resulting linearly positive histories avoid the highly restrictive
decoherence conditions and yet give the same probabilities when those conditions apply. Thus linearly
positive histories are a broad extension of decohering histories. Moreover, the resulting theory is
manifestly time-reversal invariant.
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p = (PIPIT) = «(PIPIT� &
= Tr(P p)

= Tr(pPt) = ReTr(Pp). (2)

Any of these expressions written in terms of p rather than

~P) may also be applied to a system in a mixed quantum
state p 4 p2 (but still Hermitian, positive semidefinite,
and normalized, Trp = 1).

Although it is doubtful that they can be empirically
tested in general [9], it is often desirable to be able to
assign probabilities to sequences of events, which can be

Recently there has been considerable interest in finding
a formulation of quantum mechanics which yields for a
closed system not only the probabilities of single events,
but also the probabilities of sequences of events, or
histories [1—8].

Single events may be described by projection operators
P, which are Hermitian idempotent operators P = Pt =
P2. When the quantum state of the closed system is
given by the pure (for the moment) normalized positive
semidefinite Hermitian density matrix p =

~ P) (P ~

= p,
the probability of the event is

p = IIPIA&ll' = (PIP'Pl +) = Tr(P pP'), (1)

or, using the Hermitian idempotent property of P, the
Hermiticity of p, and the cyclic property of the trace,

described by the class operator

C = P( )P( -l~. . . P~2~P(» (3)

or to more general histories, described by C's that are
sums of such strings (3) of projection operators. Here
the projection operators P('~ are projection operators at
different times t;, tl ( t2 ( . . ( t l ( t„, and we are
using the Heisenberg picture. When all of the projection
operators commute, C itself is a projection operator, and
Eqs. (1) and (2) would apply with P replaced with C.
However, generically when the projection operators do
not commute, C is not a projection operator. Then the
different expressions in Eqs. (1) and (2) with P replaced
by C may differ, and it becomes arbitrary which, if any,
to use.

The usual choice [1—8] is to take the analog of Eq. (1)
and, say,

p = Tr(CpCt). (4)

This choice has the positive feature that it is always
non-negative. It is motivated by the fact that for single
strings (3), this expression indeed gives the probability
of observing the events P (') in a sequence of ideal
measurements on a system with an initial density matrix
p. This is a routine consequence of applying the standard
quantum formalism, including the collapse postulate, to
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the sequence of measurements. It also follows from
regarding the measured system as a subsystem of a
larger system, one in which, at successive times t;, the
subsystem is coupled to recording devices in such a
way that a sequence of ideal quantum nondemolition
measurements is performed, with the results stored in
commuting records. Then either Eq. (1) or (2) applied to
the total system, with the projection operator there being
the product of the commuting projection operators for the
records, gives the same answer as Eq. (4) applied to the
subsystem treated as isolated.

However, we are now interested instead in assigning
probabilities to a history of a closed system, such as the
Universe, which is not being measured by any external
device. In this case Eq. (4) cannot be derived from
Eqs. (1) or (2) for a larger system. Instead, it must simply
be postulated as a new formula.

A problem with Eq. (4) is that it generally does not give
a set of probabilities obeying the standard sum rules. For
an exhaustive set of histories (n), meaning that the sum of
the corresponding class operators C is the identity

one can form a coarser grained set of histories (n) by
grouping together the n's into a set of a smaller number
of exclusive and exhaustive n's. The class operators for
this coarser-grained set are obtained by summing

nCn

and then Eq. (4) leads to a new set of probabilities

p =Tr(C- pC--) . (7)

But now the trouble is that generically we do not have the
probability sum rule

Re Tr(C pC ) = 0 for all pairs n 4 n', (9)

which is called the weak decoherence condition [3]. It
is also closely related, but not identical, to the consistency
condition [1,2] that was proposed earlier. In the consistent
histories or decoherent histories approach to quantum me-
chanics [1—8], one only assigns probabilities, by Eq. (4),
to consistent or decohering sets of histories (n) such that
Eq. (9) or a slightly different version of it is exactly or ap-
proximately true. These probabilities then obey the usual
rules, but they are only defined for highly restrictive sets
of histories.

Here we propose a different new formula for the
probabilities of histories in the quantum mechanics of a

nEn

A necessary and sufficient condition [1—3] that the sum
rule (8) does hold for probabilities defined by Eqs. (4) and

(7) is that

closed system, namely, the analog of the last expression
of Eq. (2):

p = Re(p~c ~P) = Re Tr(C p) . (10)

Because this is linear in C, it obviously obeys the
probability sum rule (8) when

p =Re Tr(C- p)

Therefore, these may be called linear probabilities.
The obvious problem with Eq. (10) is that it can

be negative. Therefore, we impose the linear positivity
condition

Re Tr(C p) ~ 0 (12)

for all n H (n). Such a set of histories (n) obeying the
inequality (12) will be called a linearly positive set of
histories. A member of such a set may then be called
a linearly positive history (or positive history for short).

Because the linear positivity condition (12) for a
given state p depends only on the C for each history
in question, one can say whether or not a history is
positive without also specifying in which set of histories
it belongs. This is one immediate way in which the linear
positivity condition is simpler than the weak decoherence
condition (9), since the latter depends not only on the
C of the history in question, but also on the C of
all other histories in the set. This dependence on the
complete set of histories in the decohering case leads to
the complication there of needing to consider the entire
set before one can say whether any individual history is
decohering, a complication that is entirely avoided for
positive histories. (One could define an individual weakly
decoherent history as one for which the minimal set,
given by C and C = I —C, is weakly decoherent.
Every history in a weakly decoherent set of histories is
an individual weakly decoherent history, but a complete
set of more than two such individual weakly decoherent
histories is generically not weakly decoherent, whereas
any complete set of individually linearly positive histories
is automatically positive. )

One can readily see that if the system is in a pure
state, and if the class operator C is a product of rank-
one projection operators onto a succession of pure states,
Tr(C p) is a product of transition amplitudes that start
and end at the system state. If this product is nonzero,
its phase is Berry's phase [10) for the closed circuit in
the projective Hilbert space that follows the geodesic
segments joining the successive states. Thus in this
special case the linear positivity condition (12) is the
condition that the corresponding Berry's phase is in the
first or fourth quadrant (or at its edge).

Decoherent histories can be given a time-symmetric
generalization motivated by [11]with both initial and final
density matrices p; and pt (still Hermitian and positive
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semidefinite, but no longer necessarily normalized) [5].
Then the weak decoherence condition (9) becomes

Re Tr(pf C p;C ) = 0 for all pairs n 0 n', (13)

and the probabilities (4) become

P = Tr(pfC P;C )/Tr(pfp'). (14)

Similarly, the linear positivity condition (12) can be
generalized to

enable one to assign sets of probabilities to a much broader
family of sets of histories, avoiding the highly restrictive
conditions (9) or (13) of weakly decohering histories.
It is also obviously true that linearly positive histories
are an even greater generalization of histories that obey
the medium decoherence condition [3], which is Eq. (9)
without Re on the left-hand side, or the strong decoherence
condition [3], which is that there exists a complete set of
orthogonal projection operators R such that

Re Tr(pf C p;) ~ 0, (15)
C~p = R~p. (19)

and the resulting linearly positive histories can be as-
signed the probabilities

p = ReTr(pfC p;)/Tr(pfp;). (16)

In either of these cases, single-state quantum mechanics
of a closed system is the special case

pi = c2p (17)

for any positive real constant numbers c~ and c2. Even
if Eq. (17) does not hold, the linear positivity condition
(15) and linear probabilities (16) for the two-state case
are exactly the same as the analogous condition (12) and
probabilities (10) if we take

p = p;pf/Tr(p;pf), (18)

though this need not give a Hermitian density matrix

p if the Hermitian p; and pf do not commute. Thus
the two-state case is, in fact, a special case of an
even broader generalization of linear positive histories,
applying Eq. (10) to an arbitrary operator p that need
not be Hermitian or positive semidefinite, though it
should still be normalized so that the sum of the linear
probabilities is unity.

Inserting (5) into (10) [or into (16)] and expanding,
one finds [Eq. (14) of [6]] that for weakly decohering
sets of histories, the probabilities assigned by Eqs. (4)
and (10) [or by (14) and (16)] are identical. Since these
probabilities are then all non-negative, we see that the
weak decoherence condition implies the linear positivity
condition and gives the same probabilities. Of course, the
converse is not true.

Thus the set of all weakly decohering sets of histories
is a proper subset of the set of all linearly positive sets
of histories. In fact, the weak decoherence condition (9)
or (13), being a set of equations (for all n 4 n'), is true
only on a surface in the set of parameters describing a
set of histories. On the other hand, the linear positivity
conditions (12) or (15) are merely inequalities and so are
true in a region (the closure of an open region) of the set
of parameters describing a set of histories. That is, the
set of all weakly decohering sets of histories is a subset
of measure zero of the set of all linearly positive sets of
histories, whereas the latter is a subset of positive measure
in the set of all sets of histories.

In this way linearly positive histories are an enormous
generalization of weakly decohering histories. The former

Because of the strong restrictions imposed by the equa-
tions for the various decoherence conditions, often these
are loosened to approximate equalities [3,4]. However,
this procedure has a certain vagueness or arbitrariness
which is entirely avoided by the precise inequalities (12)
or (15) of the linear positivity condition.

The linear probabilities (10) and the linear positivity
condition (12) for the case of a single state p have the
nice feature that they are automatically invariant under
reversing the order of the projection operators in C,
which replaces it by C~. The same is true for (15)
and (16) with both initial and final states p; and pf if
they commute. Similarly, if we define the CPT-reversed
history n, represented by the class operator

C = 0-'C.'0 (20)

p;pf = pf p; =— 0 'pf00 'p;0, (21)

e.g. , if pf = p, —= 0 'p;0, or, alternatively, if p; and

pf commute and are separately CPT invariant, i.e., if
[p, , pf] 0 P; = P;, and pf = Pf —= 0 'pfO.

It is perhaps worth emphasizing that a set of histories
defining a sequence of measurements automatically satis-
fies not merely the linear positivity condition (12) but also
the weak decoherence condition (9), when the formulas
are applied to the records of the measurements. (This is
true because each C is then a product of projection op-
erators that commute, namely, one projection operator for
each independent record of the corresponding measure-
ment. ) Thus the formulas (10) and (4) agree in this case.

In the case of idea/ measurements, we could as well have
considered the measured system projections with which the
records are correlated. Moreover, in this case one gets
the same probability from Eq. (4) even if one replaces the

which takes the CPT conjugates of the projection opera-
tors as well as reversing the order [5,6], then the linear
probabilities and linear positivity condition are invariant
under this "time reversal" in the one-state case if, as usual,

p is replaced by its time reversal p
—= 0 'pO or, in the

two-state case, if p; and pf are replaced, respectively, by

pf and p;. In particular, the linear probabilities and linear
positivity condition are invariant (without any change of
state) in the one-state case if p is CPT invariant or in the
two-state case if
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C that is the product of commuting projection operators
onto the records with the C that is the product of the cor-
responding (generically noncommuting) projection opera-
tors onto the measured system treated as closed, i.e., with
the Heisenberg projections defined in terms of the unitary
evolution of this system in isolation. (This is why in ideal
cases one can correctly calculate the probabilities by an
analysis of the measured system alone, ignoring the quan-
tum mechanics of the measuring apparatus. ) However, if
this replacement is made for each C, then Eq. (10) does
not generically give the same answer as Eq. (4), even when
the histories are still linearly positive. Thus the probabili-
ties of linearly positive histories depend crucially on what
measurements are actually made.

For example, consider a spin-2 system with

p = lo., = I)(o., = II, P) = lo..= I)(o., = II, Pt
(]) (2)

~o., = 1)(o., = l~, and P2 = I —P& . The correspond-
'

() ()

ing set of histories, with elementary class operators (using
(2) (&) (2) (&)time-ordered labeling) C~ ~

= P I P ~, C2~ = P 1 P2,
(2) (&) (2) (&)

C~~ = ~2 P&, C22 = ~2 Pz, is not weakly decoher-
ent —because of the obvious interference —but it is
linearly positive, with probabilities p~ ~

= p2~ = 1/2,
p]2 = p22 = 0. However, if a measurement of the first
spin (i.e., of o. at time t~) is incorporated into the histories,
the resulting set of histories ~ill be weakly decoherent,
and the probabilities will all become 1/4.

We note finally that for a different category of histories
than the category [of all histories of the form (3)] consid-
ered in this paper, namely, the category of histories each
of which is given by a collection of (fine-grained) trajec-
tories in configuration space alone, it is possible to extend
the formula (1) applied to configurational events at any
single time to a probability distribution on the set of all
possible configurational trajectories [12]. One may thus
wonder whether an even broader extension [of (4) applied
to weakly decohering histories] than that provided by (10)
applied to linearly positive histories is possible, an exten-
sion which consistently assigns probabilities to all possible
histories (3). We note in this regard that such an exten-
sion is precluded by the usual no-hidden-variables theo-
rems [13]. [These theorems show, in fact, much more:
that it is even impossible to have an extension, to all histo-
ries, of (4) restricted to histories for which the projections
in the sequence (3) mutually commute. ] In other words,
the totality of different weakly decohering sets of histo-
ries, or of different linearly positive sets of histories, with
their respective probability formulas, is genuinely incon-
sistent —in the sense that the "probability" assignments for
these different sets of histories cannot simultaneously be
realized as relative frequencies within a single ensemble.
This shows, in fact, that whatever may be the virtues of
the linear positivity condition, within the framework con-
sidered here it cannot eliminate the necessity, emphasized
by Gell-Mann and Hartle [3,4], of formulating additional
conditions on sets of histories which select from this to-

tality a limited number of sets of histories, and perhaps a
unique set of histories (e.g. , one which defines what Gell-
Mann and Hartle call the "quasiclassical domain of familiar
experience" [3]).

To summarize, linear probabilities (10) or (16) may be
applied to a much broader class of histories than weakly
decohering histories. That is, they may be applied to our
proposed linearly positive sets of histories, which are sets
of histories obeying the linear positivity condition (12) or
(15), namely, the condition that the linear probabilities
are all non-negative. These linear probabilities obey
the sum rules and are equal to the previously proposed
probabilities (4) or (14) in the very special subset of
cases obeying the weak decoherence condition (9) or (13)
necessary for the probabilities (4) or (14) also to obey the
sum rules.
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