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Quantum Well Theory of the Exchange Coupling in Co/Cu/Co(001)
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The exchange coupling between two semi-infinite Co layers separated by a Cu(001) spacer is
calculated by two different methods using s, p, and d tight-binding bands fitted to ab initio band
structures of Cu and ferromagnetic Co. The contributions to the coupling from the belly (long period)
and necks (short period) of the Cu Fermi surface (FS) are determined separately. It is shown that the
short-period oscillation due to the minority electrons from the vicinity of the Cu FS necks is dominant,
the contribution of the long-period oscillations being negligible. This is due to the existence of quantum
well bound states for the minority electrons at the Cu FS necks in the ferromagnetic configuration.

PACS numbers: 75.70.I r, 75.30.Et, 75.50.Rr

Oscillatory exchange coupling between magnetic layers
separated by a nonmagnetic spacer has been observed in
a large number of metallic multilayers [1]. Ortega and
Himpsel [2] showed recently that the photoemission in-
tensity from overlayers of noble metals (Cu, Ag) on mag-
netic substrates (Co, Fe) also oscillates as a function of
the overlayer thickness with the same period as the ex-
change coupling. A consistent theory of the oscillatory
exchange must, therefore, also account for the oscillations
in the photoemission intensity. Since detailed photoe-
mission [2] and magnetic measurements [3] are available
for Co/Cu(001), this particular system is a good testing
ground for various theories of the exchange coupling.

We proposed a quantum well theory of the coupling
[4,5] which assumes that the exchange potentials of the
magnetic layers create quantum wells in the spacer layer.
As the thickness of the spacer is varied, quantum well
states crossing the Fermi surface (FS) cause periodic
oscillations of the spectral density [6] and these in turn
lead to oscillations of the coupling. The periodic behavior
of the spectral density is exploited in the quantum well
theory [5,6] to perform analytically the difficult energy
and k space sums required in the evaluation of the
coupling.

However, until now the quantum well theory could be
applied quantitatively only to simplified models which
yield coupling strengths comparable with [4,5] or even
smaller [7] than the experimental values. On the other
hand, ab initio numerical calculations [8] give coupling
strengths much larger than observed. Such calculations
are very difficult because of the large number of k space
points required to achieve convergence [5]. Recently,
Lang et al. [9] used a KKR Green's function formalism to
calculate the coupling between two monolayers of Co in
Cu at finite temperature. They argued that convergence

in k space, which is not feasible in their method at
T = 0, can be achieved at room temperature. However,
the coupling strength at the first antiferromagnetic peak
they obtain for Co/Cu(001) is still an order of magnitude
larger than observed. The theoretical situation for Co/Cu
thus remains unsatisfactory.

To resolve this problem, we report here the results
of two parallel calculations of the exchange coupling
in a Co/Cu(001) trilayer with thick (semi-infinite) Co
layers. In the first calculation, we used the quantum well
theory with fully realistic s, p, d tight-binding bands with
hopping to first and second nearest neighbors fitted to the
ab initio band structures of Cu [10] and ferromagnetic
Co [11]. To check the accuracy of this approach,
we have generalized our new torque formula for the
coupling [12,13] to the same multiorbital band structure
of Co/Cu(001) and evaluated the coupling numerically at
finite temperature (details will be published elsewhere).
The torque method has an exact correspondence with
the method of Lang et al. [9] and it converges at room
temperature for the same number of k space points.
However, the torque formula [12] has the advantage that
the coupling can be evaluated for an arbitrary thickness
of Co with no extra computational effort. This is crucial
since the measurements of the coupling [3] were made not
for monolayers but for thick layers of Co.

Applying the quantum well theory to Co/Cu(001), we
determine separately the long- (belly) and short-period
(neck) contributions to the coupling. Contrary to popu-
lar belief, we find that the short-period oscillation domi-
nates, the contribution of the long-period oscillation being
negligible. This result is confirmed by the full numerical
calculation and the quantum well theory provides a simple
interpretation in terms of the band structure in the direc-
tion perpendicular to the layers. As expected, for thick
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J(N) = ([0 (N) + f1 (N)]FM —[0 (N) + f), (N)]AF)/A,

where A is the cross-sectional area. The thermodynamic
potential for a given magnetic configuration at temperature
T is given by

ktiT P—
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ln(1 + exp[(p —E)/k&T])

X 23'(E, kii, N) dE,

where p, is the chemical potential and D' is the spectral
density for particles of spin s in the trilayer having that
configuration. Because of the in-plane translational invari-
ance, we label all the trilayer states by the plane index i

and by the wave vector kl~ parallel to the layers. The spec-
tral density 23' is given by

23'(E, k~~, N) = ——lm Tr g G,', (E, k~~, N),
7T

(3)

where G,'; is the diagonal matrix element of the one-
electron Green's function, the trace is over all atomic
orbitals, and the sum over i is over all atomic planes.

The problem now reduces to the calculation of
the spectral density and evaluation of the difficult k

space and energy sums. Assuming that the normalized
spectral density (1/N)623(p„, k~~, N) = (1/N) ([23" +
23t]„M —[271 + 231]AF) is a periodic function of N,
we have shown elsewhere [6,14] that, for a thick spacer
layer (N ~ 5 —6), both the summation over k~~ and the
energy integral in Eq. (2) can be carried out analytically
using the stationary phase method. This leads to the
following formula for the exchange coupling J(N) which

Cu layers the quantum well method gives the same results
as the numerical calculation. Finally, we show explicitly
that the spectral density in Co/Cu(001) oscillates periodi-
cally with Cu thickness. Since the spectral density con-
trols the photoemission intensity, its oscillations explain
the oscillatory behavior of both the coupling and the pho-
toemission intensity.

We Consider N (001) planes of Cu with the bulk lattice
constant sandwiched between two semi-infinite slabs of
ferromagnetic fcc Co. A small lattice mismatch between
Co and Cu is neglected. Following our original approach
[4—6], also adopted by Lang et al. [9], we assume that the
local potentials in the Cu and Co layers are frozen, i.e.,
they do not change in going from the ferromagnetic (FM)
to the antiferromagnetic (AF) configuration of the trilayer.
We also assume an abrupt interface between Co and Cu.

The exchange coupling, defined as the total energy
difference per unit area between the ferromagnetic (FM)
and antiferromagnetic (AF) configurations of the trilayer,
is expressed in terms of the thermodynamic potentials 0"
for electrons of spin s,

is asymptotically exact for large N:

e2inNdkg
J = Re

, 2s 2sNd Bki/BE + Bf,/BE

kg TdI(B2k /Bk2)B2k /Bk~I &I2

sinh[~kiiT(2sNd Bki/BE + Bp, /BE)]
(4)

Here, d is the interplanar distance, a. = i when both sec-
ond derivatives in Eq. (4) are positive, o. = —i when they
are negative, and o. = 1 when the derivatives have oppo-
site signs. The oscillation periods ~/k& are determined
by the extremal radii k& of the bulk spacer FS in the di-
rection perpendicular to the layers. Finally, Ac,. (p„k~~)
are the Fourier components of the difference between the
normalized spectral densities in the FM and AF configura-
tions. We have included in Eq. (4) the energy dependence
of the phase P, of the complex Fourier coefficient hc, .

In agreement with the torque calculation it leads to an
initial decay of the coupling with Cu thickness N slower
than the usual 1/N2 dependence. The Fourier coefficients
and all the derivatives in Eq. (4) are evaluated at E = p,
and at the points k~ =

k~~ where ki (p„k~~) is stationary
and the contributions of all the stationary points must be
included.

We begin the evaluation of Eq. (4) for Co/Cu(001) with
the factors that depend only on the bulk Cu FS. The
oscillation periods ~/ko~ were obtained from the Cu FS
extremal radii in the [001] direction. There are two
extremal radii k~ and they occur for k~~

= (0, 0) (belly)
and k~~a = (~2.53, ~2.53) (necks) where a is the lattice
constant of Cu. The corresponding periods are pb =
5.7 atomic planes (-10.3 A) and p" = 2.6 atomic planes
(-4.7 A.), respectively. The factor o. = i for the belly
and o. = 1 for the necks. The Cu FS curvature and the
FS velocity BE/Bk& were determined from the Cu band
structure.

The last ingredient in Eq. (4) is the Fourier analysis
of the spectral density. We first computed the spectral
density for discrete (physical) values of the Cu thickness
L = Nd by the method of adlayers [15] and then contin-
ued it analytically to all real L. The calculation for dis-
crete L = Nd is based on the surface Green's function for
a semi-infinite slab of ferromagnetic Co, which was deter-
mined by the decimation method [16].

The normalized spectral density 5'D/N can be Fourier
analyzed only if it is known for all values of the "contin-
uous Cu thickness" L in the interval (—~/2k~, 7r/2k'),
where k& is either the belly or neck FS radius. We first
generated the spectral densities for trilayers with the num-
ber of Cu atomic planes N ranging from 400 to 600. The
spectral densities normalized to N were then shifted to
the first period (—vr/2k&, ~/2k, ) by subtracting from N
the appropriate integral number of periods p. As antici-
pated, all the shifted points condense on a continuous
curve, which demonstrates explicitly that (1/L)b, X7 is a
periodic function of the continuous Cu thickness L.
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FIG. 1. Normalized spectral density 5'D/N (in Ry ' per
atomic plane) at FF and the extremal point k~~

= 0 correspond-
ing to the belly of the Cu FS. (a) Raw computed data as a
function of discrete Cu thickness N in atomic planes. (b) Data
shifted to the first period of oscillations ( 7r/2k~—, 7r/2k~) as a
function of the "continuous" Cu thickness I..

The contributions to the coupling from the belly and
neck extrema evaluated from Eq. (4) at room tempera-
ture will now be discussed separately. We start with
the long-period component which originates from the
bell y extremum. The raw computed spectral density
(1/N)623(EF, k~~

= O, N) is shown in Fig. 1(a) together
with the data shifted to the first period [Fig. 1(b)]. The
corresponding coupling Jb"'~(N) is shown in the inset
in Fig. 2. It is far too weak to account for the total
observed [3] coupling strength. This is not surprising
since it is apparent from Fig. 1(b) that the peaks in the
spectral density, as they move through the Fermi energy
with varying spacer thickness, are broad resonances and
the confinement in both spin channels is, therefore, only
partial and weak.

We now turn to the short-period neck contribution
which is much more interesting. Examination of all three
components of the spectral density reveals that carriers
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FIG. 2. CComparison between the exchange coupling versus
Cu thickness for a Co/Cu/Co(001) trilayer calculated from
Eq. (4) (solid circles) and from the torque formula (squares).
The line passing through the solid circles is obtained from
Eq. (4) for continuous Cu thickness. The inset shows the long-
period component of the coupling originating from the belly of
the Cu FS in mRy per atom.
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FIG. 3. Same as in Fig. 1(b) but for the extremal point k
corresponding to the necks of the Cu FS. The normalized

in s

spectral density is a set of delta function peaks corresponding
to bound states localized in the Cu spacer.
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FI&G. 4. Band structures of bulk Cu and ferromagnetic fcc Co
in the relevant [001] direction for one of the neck wave vectors
k~~a = (2.53, 2.53). k, is given in units of 27r/a

of both spin orientations in the AF configuration, and
also the majority spin carriers in the FM configuration,
are only weakly confined (broad resonances). However,
the minority spin carriers become completely confined in
a quantum well in the FM configuration. Their spectral
density is a set of delta functions which is shown in Fig. 3
and it dominates the total normalized spectral density.

To explain the physical origin of the complete confine-
ment we reproduce in Fig. 4 the band structures of bulk Cu
and Co in the relevant [001] direction for one of the neck
wave vectors, k~~a = (2.53, 2.53). The sp-like Cu band
which intersects the FS, and hence determines the cou-
pling, has no counterpart at the minority spin Co FS. The
minority spin carriers must, therefore, be fully confined in
Cu in the FM configuration. On the other hand, there is
an sp-like band intersecting the majority Co FS into which
the corresponding Cu band can evolve. The confinement
of the majority-spin carriers is, therefore, only partial. This
argument shows that full confinement of minority spin car-
riers, which dominate the coupling, takes place regardless
of the details of the interfacial potential and this justifies
our assumption of abrupt interfaces.

E . 4
The total coupling at T = 316 K calculated from

q. ( ) is compared in Fig. 2 with the numerical result
obtained from the torque formula. The left-hand scale in
Fig. 2 gives the coupling in mRy per atom in the (100)
surface. The right-hand scale gives the conversion to the
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units (mJ/m ) commonly used by experimentalists. The
observed coupling strength [3] at the first antiferromag-
netic peak [about 6 monolayers (ML) of Cu] is 0.4 mJ/m
which is to be compared with our calculated value of
1.2 mJ/m obtained from the torque formula. On the
other hand, the coupling strength at the first antiferromag-
netic peak obtained by Lang et al. [9] is about 5 mJ/m .
This large value is probably due to the fact that Lang
et al. calculate the coupling for monolayers rather than
thick layers of Co. This is certainly the reason why,
in contrast to our calculation, they find a relatively
large amplitude of the long-period oscillations. It is
only when the Co layers become bulklike that the band
structures of Co and Cu along the relevant I"-X line
match well, which leads to weak confinement and,
hence, to a very weak belly contribution to the coupling.
However, it is interesting that, for large Cu thickness,
all three calculations lead to broadly comparable overall
strengths.

The calculations reported here have all been carried
out at T = 316 K. If the summation over k~~ is done
numerically, as in the present torque method calcula-
tions and in the work of Lang et al. [9), it is essen-
tial to work at finite temperature to secure convergence
with only a few thousand k~~ points. This is not feas-
ible at T = 0 [5]. A great advantage of evaluating the

k)~ sum analytically by the stationary phase method is
that the result, Eq. (4), is valid over the whole tempera-
ture range, including T = 0. In the present example we
find that on going from T = 316 K to T = 0 the cou-
pling increases by only 30% for a 6 ML spacer but by
a factor 2 for a 25 monolayer spacer. The second ad-
vantage of the stationary phase method, fully exploited
in this paper, is the explicit separation of contributions
to the exchange coupling from different Fermi surface
extrema. In view of these strengths of the asymptotic
method, exact for large spacer thickness, the independent
verification of its accuracy over a wide range of spacer
thickness for a real system (Fig. 2) is very important for
future work.
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