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Ginzburg-Landau Equations and Vortex Structure of a d y Superconductor
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We derive microscopically the Ginzburg-Landau equations of a superconductor with d 2 —y2 symmetry.
The structure of a single vortex in such a superconductor is determined by solving these equations. The
most interesting feature of the vortex structure is the opposite winding s-wave component induced
near the vortex core. Far away from the center of the vortex core, the winding of the s-wave
component becomes more complicated and the magnitude shows strong anisotropy. The distributions
of supercurrent and local magnetic field also show anisotropic behaviors.

PACS numbers: 74.60.Ec, 74.72.—h

Recently both theories and experiments have suggested
that the high T, superconductors might possess uncon-
ventional pairing symmetry [1—3]. The vortex structure
of a superconductor with 0 2 —y2 pairing symmetry is of
great interest because it might be relevant to high T, su-
perconductors [2). It is expected that the structure of a
d-wave vortex is very different from that of s wave [4,5]
or p wave [6]. In particular, the detailed structure might
be helpful for a theory to reconcile with experiments on
transport properties in the mixed state [7]. Volovik [8]
is the first one who studied the density of states of a d-
wave vortex core. Based on symmetry considerations, he
argues that the core of the vortex in the d-wave super-
conductor should contain all the possible gap functions
that are consistent with the maximal symmetry group of
the vortex line. In particular, it should contain the am-
plitude of the conventional s-wave pairing with the oppo-

site winding phase. Because of this correction, the total
gap function has no lines of gap nodes within the core.
Soininen, Kallin, and Berlinsky [9] calculated the vor-
tex structure numerically on a 16 X 16 lattice within the
framework of the self-consistent Bogoliubov —de Gennes
theory. They identified three different regions of the vor-
tex; far away from the center a pure d wave exists, and
near the center there is a normal "inner core" where both
s wave and d wave vanish; in the middle region d wave
and s wave coexist. However, due to its numerical na-
ture, the behavior of each component is not clear from
their calculations, and the approximate size of each region
cannot be determined. They are also unable to study the
temperature (T) dependence of the order parameters.

In this Letter, we derive the Ginzburg-Landau equations
for a d-wave superconductor by using the finite tempera-
ture Green's function method. To this end, we begin with
the Gor'kov equations [10]

(—i% + eA) + p, G(x, x', to„) +
2m

dx" A(x, x")F (x",x', to„) = B(x —x'),

(iV + eA) + p, F+(x, x', co„) +
2m

dx" 6"'(x, x")G(x",x', co„) = 0, (2)

and derive equations for the k dependence of the order parameter. Here G and F are, respectively, the single particle
and pair propagators. co„= (2n + 1)AT. By definition, the order parameter in real space is

A*(x, x') = V(x —x') T Q F t (x, x', co„), (3)
~n

with —V(x —x ) as the effective pairing interaction between two charge carriers. From Eqs. (1) and (2), and iterating
Eq. (3) to the third order in 5, we find

5"(x, y) = U(x —y)T g dx' dx" Gp(x', x, —co„)h'(x', x") Gp(x, y, Ca )

dxt dx2 Gp(x, x~, to„)A(xt, x2) dx3 dx4 Gp(x3, x2, —co, )A*(x3, x4)Gp(x4, y, co„), (4)

where Go is the Green s function of free electrons in magnetic field B = V X A. In the case that we are interested in
where 1/kF (kF is the Fermi wave number) is much less than the London penetration depth, Gp can be related to the
zero field Green's function Gp via the approximate expression [11]

Gp(x, x', ca„) = Gp(x —x', co„)e
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and

Gp(X~ con)
ik.x

tors. Employing the approximation
„I //( V, .dl+ / V, dl5"(x', x") = e' ' " ' ' A*(x, y), (7)

where $i, = (k~/2m) —p, is the kinetic energy of the
charge carrier with mass m measured from the chemical
potential p, . And we have assumed the Fermi surface is
two dimensional as in the case of high T, superconduc-

and rewriting everything in terms of the center of mass
1 / 1

coordinates R = ~(x + y), R' = 2(x' + x") and the rela-
tive coordinates r = x —y, r' = x' —x", the first term of

!

b,
' in Eq. (4) can be written as

(R, r) = V(r) dRdr T Gp R + R, cu„Gp R R +/
I' r r' r

(]) 2 2' 2 2' ")
i(R' —R) ( —i vR —2eA )R+i(r' —r) (—iv„)g+(R r)

In the above equation we have assumed the slow variation of magnetic field A(x) = A(y) = AR or that the magnetic
field acts only on the center of mass of the Cooper pair, not on the relative coordinate.

Expanding in terms of H = —iV'R —2eAR to second order, and performing the Fourier transform with respect to the
relative coordinate, Eq. (8) becomes

A(, )(R, k) = dk'
V(k'. —k) T P

Ctl ri

+ g &' n (kl2II2 + ki2 112)
T 1 2 i, l

—6'
2 . (2 )'(-'+ ~,')' , ~"', , 11' X*(R,k').

2m (~ + 6k')
(9)

N eglecting the contribution from the vector potential
A [11], the remaining term of 5 in Eq. (4) takes the
expression

V(k —k') = —V, + Vy(k, —k~) (k,' —k' ),

b. '(R, k) = h,*(R) + h,*(R)(k,' —k,'), (12)

A(2)(R, k) = — V(k —k')T p
dk' 1

2~ „(co„+gii)

X!~*(R,k')!'~*(R,k') . (10)

According to Eq. (4) b, (»(R, k) + A(2)(R, k) = A*(R, k).
To obtain the generic Ginzburg-Landau equation for a d-
wave superconductor, we make the following ansatz [12]:

where k is the unit vector in the direction of k. By taking
both Vd and V, positive, then —Vd corresponds to the
attractive interaction responsible for d-wave pairing and
V, represents a repulsive "on-site" interaction.

From Eqs. (9) and (10) and comparing both sides
of A(, )(R, k) + A(z)(R, k) = 5'(R, k) for k-independent
terms and terms proportional to (k2 —k~), we obtain

5,* = —N(0)V, A,
"

ln + N(0)V,
2e & coo 7s'(3) 1

mT 8 7rT2

x —,' 11'~,* + —,'(II,' —11,')~*„ + !~,!'~,* + !~,!'~,* + —~*,'~, ,
2 d (13)

Az = —N(0)V&hz ln*=1 2e~ co~

2 ~T
7g(3)

8 7rT2 N(0) Vg

x —,'lI'6*, + —,'(II,' —Il', )b, ,
* + !5,!'2 *„ + —4,*'b, + —!6 !'4„* . (14)

Here 7 is the Euler constant, N(0) is the density of states at the Fermi surface, vF is the Fermi velocity, and coo is the
cutoff frequency for the interactions. A closer examination shows that Eq. (13) will lead to unphysical solutions for 5„
because its convergency is not established. To avoid this difficulty, we employ the Pade approximation,

5,* = —2g 5,* 1 + „—II 5,*+ — (rl, —II )5*„+ !b,, ! 5; + !dl,„!b, ,
* + —b, *„b„

4 F s
g

F x y d s s 2

with gp = V, /Vg, a = 7s'(3)/8(mT), and Ag = zN(0) Vg.
The free energy obtained from the above equations is

f = 2(1 + 2gp) l~ l ~a ln(T /T) i~el + ii~e[l~ l
+

g() i~el + 21~ l i~el + q(~,
*

~q + ~q ~, )]
+ iield& [2111~,*1 + III~*

I
+ (II,A. II b II*A, II 5* + H.c.)]. (16)
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The corresponding expression for the current can be obtained from Gor'kov's equations,

j(R) = enN(0)EF, „1,, 1 „, „, 1

2m 2
b, ,*II*A, + —A„*H'bd + —(5,"H'Ad + A*H*A, )x ——(B,*H*bd + 5„"H*A,)y + H.c.

2 d x s
2 s y S

(17)

Since the coefficients 2(1 + 2go) ) 0 and —ln(T, /T) (
0, it is easily seen that the pure d-wave solution is stable
at infinity, as expected. At the first glance, the 6, Ad
term favors a relative phase 7r/2 between s-wave and d-
wave order parameters, or s + id symmetry, but we shall

!

show in the following discussion that the presence of the

,a,* + H'a; + —' (H,' —H,') a„* + —,

mixed gradient term alters such a picture. To study the
structure of a single vortex when the coherence length is
much smaller than the penetration depth, we define go =
~nvF/2 which differs from the usual coherence length
at zero temperature only by a numerical factor -1 and
b, o = Q4/3n, and cast the Ginzburg-Landau equations into
dimensionless form r/gp: r, 5/Ap

fd, f'b, *, + —[b,„/'b, ,
* + —6*,'2, = 0, (18)

—1n(T, /T)a"„+ H'a„* + (H,' —H,')a; + —la, I'a,* + —a,*'a„+ ID„I'sd = 0,
3

' " 3

where n, = (1 + 2gp)/Ad.
In terms of cylindrical coordinates, R = (r, 8), we

expect that, far away from the center of the vortex, the
d-wave order parameter in the gauge choice A = 8/2er
takes the form b, d

= e'Og(r). Simple inspection of the
Ginzburg-Landau equation shows that the leading order
terms that are important at large distances are

n, A,
* + 2(H, —H )ge' + 3g b, ,*+ 3g e ' 6, = 0,

(20)

V A=

—ln(T, /T)g + g = 0,
) 2

~
I
g',

2er j

(21)

= 3m/87rne . (22)

Equation (20) suggests that the solution for 5,* has the
form 5,* = ( ae '~ +—be3'0)/r2. In the physically inter-
esting region $ « r « A, Eqs. (20) and (21) are easily
solved to give

(23)

a= n, + —g — —g
10 2 gus+ g3 4 '

(24)

6 (IS + g g
14 2 g3u, + g3 4

(25)
Thus the induced s-wave component decays as 1/r2 far
away from the core and the e '~ and e3'~ terms combine
to give the profile the shape of a four-leafed clover (see
Fig. 1).

Near the center of the vortex, to the leading order, our
Ginzburg-Landau equations become

H'a*„+ (H,' —H,')~; = 0, (26)

The general solutions to Eqs. (26) and (27) are f ~ (r) =
c~r, g(r) = cor, and to the same order fq(r) = 0. So,
near the center of the core, Ad —core', 5, —c ~

re
where the constants co and c& have to be determined by
connecting the solution near the center with the solution
far away from the core, just as in the case of a conventional
s-wave vortex [4]. Thus near the center of the vortex
the s wave has the opposite winding number relative to
the d-wave component [8]. This kind of mixing of s-
wave and d-wave components is different from what has
been studied before [13]. The relative phase between s-
wave and d-wave components is shown in Fig. 2 for both
far from and near the center of the vortex. In general,
the full solution to the Ginzburg-Landau equations of a
single vortex involves all possible terms that are consistent
with the maximal symmetry group of the vortex: Ad =
P„g„(r)e' "+' and 4,* = g f (r)e't 'i~, where n, m

need to be summed over all integers. The immediate
consequence of the coexistence of s-wave and d-wave
pairing is that there will be no lines of gap nodes within
the core, so fermionic excitations will be gapped.

H'a,* + —(H.' —H,')a*„=0. (27)

The solution again has the form b, d = g(r)e'0, b, ,* =
fi(r)e " + f2(r)e"
3682

FIG. 1. The magnitude of s-wave component ~k, ~' far away
from the core. The profile has the shape of a four-leafed clover.
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It is interesting to note that the s-wave component is
suppressed by V„which should correspond to the on-
site repulsion used in Ref. [9]. On the other hand, our
calculation shows that even when V, = 0 the s-wave
component still persists. The characteristic decaying
length of the s-wave order parameter measured from
the center of the vortex core is gp/ga„which is also
suppressed by V, . The temperature dependence of the
s-wave order parameter is complicated, but near the
transition temperature it has the same behavior as the d-
wave component, namely, [1 —(T/T, )]'I .

To calculate the supercurrent and local magnetic field,
we need to consider the I/r order corrections to hd
when g « r « A, which turns out to consist of terms
proportional to e'~, e5'0, and e '0, respectively. We
obtain, for r -. 0,

j = 2(cp + 2c, )r8,
B = [Bp —4(cp + 2c&)r ]z,

and for g «r «A,

(28)
FIG. 2. The relative phase between s-wave and d-wave
components. The vectors with the outlined arrow represent
the d-wave order parameter, while the vectors with filled arrow
represent the s-wave. The angle between the two vectors is the
relative phase. We have only drawn the cases near the center
of the vortex and far away from the core.

4pg 2(a + 3b) . „1 1
sin40r" — —+ +

2m A2 r3 I" g
+

r
a+3b

cos40 (30)

gB=@p z ln2~42 r
1

g2 j/~2 f+ 2

a+3b
cos40

2p
(31)

where 4p = h/2e is the flux quantum. Such an
anisotropic distribution could be measured in principle by
methods such as the scanning SQUIDs [3].

In summary, we have derived microscopically the
Ginzburg-Landau equations for a d 2 —y2 superconductor,
and obtained the asymptotic behavior of the single vortex
structure. Such a structure could be observed in scanning
tunneling microscopy on d-wave superconductors. This
is the first time that an analytical approach to the d-wave
vortex structure has been constructed. The Ginzburg-
Landau equations that we obtained should provide a
convenient starting point for studying various properties
of the superconducting state in a d-wave superconductor.
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