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"Limit" Model of Cu02 Planes: Exact Results
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We solve the simplest tight-binding model of electrons in a Cu02 plane with Coulomb repulsion only
on the copper ions, by a limiting procedure which retains all contributions O(t2/U) while projecting out
the higher order terms. In addition to the ground state energy we identify a variety of quasiparticles;
fermions with and without dispersion and localized spin-one triplets.

PACS numbers: 74.25.Jb

Introduction and summary of results —W.e solve the
simplest possible model of a copper oxide (Cu02) plane
[1], in which the dynamics of the electrons is governed
by a tight-binding Hamiltonian which is invariant under
particle-hole conjugation

H = t (c; —a;+s + H.c.) + H2,

where i stands for the position of any of N copper ions on
a square (sq) lattice R; = (n, m); 6 = (~z, 0) or (0, ~2)
locates the four nearest ligand oxygens, and o. labels the
spin. Here,

H2 = U p[2(n;1 —
—,) (n;t —

—,) + —,] (2)

is the two-body interaction and n; = c; c; the occu-
pation number operator of electrons on the copper ion.

The antiferromagnetic "mother phase" of high-
temperature superconductors corresponds to occupation
of each ligand p bond by two electrons (02 ) and of
each copper d orbital by one electron (Cu2+) for a total
of n = 5 per cell. Superconductivity is a feature of
n = 4.9; however, this Letter does not directly concern
superconductivity. Rather it presents a way to identify
and classify the underlying quasiparticle eigenstates for
n ~ 4 [2]. Because H2 is a two-body interaction this nor-

mally poses an insoluble many-body problem. However,
we have found a limiting procedure, specified below,
whereby it is possible to obtain dynamical information
for the low-lying states in dimensionless form.

The calculation proceeds in stages. First Fourier trans-
form the c; and a;+q operators. Because the Cu02 lattice
is a "decorated" sq lattice, a dispersionless band physi-
cally located on the oxygen ions (here denoted the "p"
band) peels off. With Fermi level p, ) 0 the P band is
fully occupied. We transform the surviving oxygen band
(denoted the "n" band) and the copper band (the "c"
band) to the Wannier representation. Now all operators
are rooted on a common set of sq lattice sites R;.

A trial ground state of singlet pairs centered about
each lattice site yields a variational energy per cell
F/N = —29.374052. . . t*, almost twice as low as for an
equal number of particles in Bloch states in the Hartree-

Fock approximation [3]. We next sum all intersite
contributions to the ground-state energy which are of
O(t /2U), proceeding to the limit t ~ ~U ~ ~ while
holding t" —= t /2U constant. We call this "the limit, "
hence the title of this Letter. The exact ground-state
energy for n = 4 is Fo/N = —30.030539. . . t*, close to
the theoretical lower bound of —32t'" [4]. All higher-order
corrections vanish in the limit [5].

Added electrons or "holes" (i.e., some n; = 4 ~ 1)
1

form Kramers spin doublets (S = 2) and are nominally
[6] fermions carrying charge and crystal momentum hk in
identical [2] Bloch bands of width W = 32.518700. . . t"
A "hard-core" repulsion prevents more than one excitation
from occupying a given site; other than that the fermions
do not interact. The logarithmic van Hove singularity
(vHS) in the one-particle density of states p(a) is at
~e ~

= 22.994 194. . . t*, where the Fermi level would lie for
n = 5 if there were no hard-core repulsion [7]. At low
energies the dispersion in this 'gapless semiconductor" is
/af ~ fkf, so that for n = 4 (p 0, ) p(p) 0 as shown
in Fig. 1.

Additionally, above the vHS one finds localized spin
5 = 1, n; = 4, states at energy e = 29.374 052 . . . t".
Once they are present they interact with the singlets
and doublets and with each other [4] in a complicated

vHS

dos

I
I

e(triplet)

FIG. 1 . One-particle density of states vs energy. Shown
schematically are the electron (n; = 5) and hole (n; = 3) bands
originating at e = 0, the van Hove singularity (vHS) and the
energy of a triplet S = 1 excitation. The P band at zero energy
accommodates up to 2% noninteracting electrons.
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where

and

H = —t g co(k) (cI, nI, + H.c.) + H2,t
k, cr

~(k) = 2 cos2 2 k„+cos 2 k~,
]. 1

(3)

(4)

1 1

ak ~ cos2 k~ + bk ~ cos2 kY
(5)

cos -k + cos -k
in which ak is the Fourier transform of a;+q operators
on horizontal bonds and bk of similar operators living on
vertical bonds. A second linear combination of horizontal
and vertical bonds, orthogonal to the n's, is

1 1

ak ~ cos2 ky
—

Ak ~ cos2 kx
pa,

cos k~ + cos k

Together with its Hermitian conjugate pi, the latter to-
tally disappears from, and commutes with, the Hamilton-
ian. Consequently, the P band contains 2N localized (dis-
persionless) eigenstates for SU(2) electrons at precisely
e = 0 with which to accommodate up to 2N electrons.

The corresponding lVannier operators include c;, the
original copper orbital operator introduced in Eq. (1), and

manner. Other eigenstates lie much higher, in the vicinity
of e = U ~. The low-lying spectrum near n = 4 is
schematized in the one-particle density of states (DOS) of
Fig. 1).

In the simple model treated here, there are found no
additional interactions among the quasiparticles besides
the hard core, regardless of how many particles or
excitations we introduce. The low-lying states of the
Hamiltonian all have energies proportional to t*. If we
adopt this as the unit of energy our model is entirely
devoid of adjustable parameters, except for temperature
and Fermi level p, , the position of which determines the
electron concentration.

Why is this model exactly soluble? —It should be em-
phasized that these exact results are contingent on sev-
eral factors, including the particular form of Eq. (2) which
is different from the various choices for this interaction
adopted in the literature [1]. Any other form of the
two-body interactions leads to a more complicated n = 4
ground state, including intractable "vacuum fluctuations. "
In addition to the limiting procedure which projects out
vast numbers of complicated diagrams and permits ex-
act sums over intermediate states by use of the complete-
ness theorem, there are several other aspects of our model
which, on their face, are innocuous but which help attain
closed-form solutions, viz. , the assumption that a;, b;
and cI are a complete set of anticommuting operators
[8], i.e., that they (or their conjugate operators) destroy
(or create) particles in mutually orthogonal localized or-
bitals, plus neglect of such other interactions as U~d, t»,
and U„p,U„„,etc. [9].

The calculations. —We now sketch the procedure.
Fourier transformation of the operators in (1) yields

= I/WN giLaz e'""&nl, ~, a linear combination of
oxygen orbitals from a number of shells centered on the
jth site. In its new representation the Hamiltonian takes
the form

H: i Q T(Rjj) (cj g nj ~ + H c ) + H2 (6)

with T(R) the lattice Fourier transform of cu(k):

T(R) = P e'"' co(k) .
kLBZ

(7)

T(0) = 1.916182797, T(~1,0) = T(0, 4-1) = 0.280185911,
T(~1, ~1) = —0.0470, etc. The T's drop off slowly with
distance but there is, in fact, no need to discard any of
them; the identity g, » R T (R) = 4 is used to sum all their
contributions.

One starts with the terms in T(0) and views intersite
connections as perturbations. Decompose H as follows:
H = P; H; + H', including in each H; all the terms
relevant to a single site

H; = t+T—(0)(c; n; + H.c.) + 2U(n;t —-)
Ux (n;& —

—,) +

while H connects distinct pairs of sites (i, j),

(8)

H' = t g T(R—;,)(c; n, + H.c.).
iWj, o

(9)

So far, there have been no approximations, nor has the
limiting procedure been invoked.

Of the 16 eigenstates of H; (or 64 including the p's)
8 (or 32) have energy O(t*) and the remaining 8 (or 32)
energy O(U). We list the low-lying states below. Integers
indicating the occupancy (i.e. , the charge) on the ith site
will include two electrons assumed to be present in the
passive p band: the second label, if any, indicates the spin
cr =f or J (~R/2) in the usual notation, the last label,
the site.

Low lying eigensta-tes of each H;.—At each site we can
have one, and only one, of the following eight low-energy
configurations [10].

(A) The n = 3 low-lying state is the Kramers doublet

1+ p3

where p3 = tT( )/0(U —ez) = tT( )/0U Its energy is.
U U + [tT(0)]2

[rT(0)]'
2 2 U

= —2T2(0)r*.

(B) The lowest energy belongs to n = 4,
t t t t t t t t

14, ) = ' 'ct)A$) + ug)cEj + p4 ng)nij + ci)ci)

2(1 + S 4)
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where p4 = 2tT(0)/(U —e4) = 2tT(0)/U and Ae;, = 4—t*T (R;,). (10c)

e4 = U U

2 2
+ 4[tT(0)] = 8T—(0)t*.

(C) The n = 5 doublet is
t t t

10),
Ci, o ~i,—o ~i,o p5Ci, o Ci,—o. ~i,a.

1+ p5

where p5 = p3 and e5 = e3. (D) Finally, the n = 4 zero
energy es=~ = 0 triplet states are

(10a)
in which II;, =g (c; n, + c, n; ) + H.c. Upont t

calculating (10a) one finds that in leading order
connects the ground state only to those excited states (4~1
which have energy O(U), and that the sum over such
states can be evaluated in closed form.

That is the happy consequence of having chosen
H2 in the symmetric form of Eq. (2) [1]. Any other
choice would have caused (4, il e (4, jl to mix with the
pair of low-lying excited states (3, i

I
e (5,jl, similar

to "excitons. '* M = (4, i I e (4, jIA;, 13,i) 15,j) just
vanishes in our model by virtue of an internal symmetry.
When M is not zero it is O(t/U), hence, in general, the
vertex for the transition (4, i I (4, jl ~ (3, il e (5,jl
is O(t"), causing vacuum Iluctuations which can neither be
neglected nor calculated in closed form [11]. But even in

such a case, where one is unable to write down the many-
body n = 4 ground state in closed form, in the limit the
energy still turns out proportional to t".

Because the energy denominator in (10a), E~ —Eo =
U, is constant the "completeness theorem" serves to
efficiently sum the numerator over all excited states.

g I(C', I&;, 14, i& 14,j&l'/(E, —Eo)

= (4, i I e (4, jlA, 14, i) e 14, j)/U = 2/U. (10b)
Combining (a) and (b) we obtain the bond energy

I tT, i& = c;tn;110&, Ill, i& = ' ' ' '
10&,

2
Ill, i& = c,'„n,', 10&.

Intersite contributions and ground-state energy. —Even
after omitting the P's there remain (in principle) some
32 896 independent matrix elements of H' connecting
each and every pair of sites In .the simplified model
treated here, these boil down to just a few terms which
can be handled without approximation.

The 14, i&'s have by far the lowest energy and are
prime candidates for the ground state, which for the
sake of argument we shall call the "vacuum. " One can
add particles or holes to this vacuum. It is, however,
necessary to correct the vacuum energy for off-site
correlations arising from H', such as the bond between
two sites i, j'.

~e;, = t'T'(R;, )g—l&+', If);, 14, t& 14,j &I'/(E, —Eo),

Each is shared by two sites, thus the energy per site is just
half, b, e;, /2. Summation over all bonds at R;, 4 0 yields
the complete ground-state off-site correlation energy

Hd = 6t'T(0) g T(R;~)d5 (R;)dg (R&) . (12a)

Included at R;, = 0 is the energy V; required to create a
doublet in the first instance. In the Bloch representation,
inversion of Eq. (7) and substitution into (12a) yields

Hd = 6t*T(0) g cu(k)dk ~dk ~
kCBZ

= 6t*T(0) g cu(k)nk
kcBZ

(12b)

nk ~ = dk ~dk is the occupation-number operator of a
Bloch state in the "d band. " The lowest Bloch energy
e(k) = 6t*T(0)cu(k) is at (7r, 7r). Dispersion near the band
minimum is thus a linear (rather than the usual quadratic)
function of momentum. The DOS is p(e) ~ e, as in

AE = 2Nt—* g T (R) = 2N—t*[4 —T (0)],
RWO

using the sum rule. Combining this with the on-site
energy, one finds the total ground-state energy to be
exactly Eo = Ne4 + AE = —N(30.030539. . . t*)

If we replace the ground-state 14, i) singlet, together
with all its bonds to other sites, by a Kramers doublet
15, i &, the effective "potential" energy cost is V; =
(es —e4 +the shift in total off-site bond energies). Once
again as a consequence of the simple model assumptions,
all off-site bond energies remain precisely unchanged
and V; = es —e4 = 6T~(0)t* from (C) and (B). The
(i, j) bond energy connecting two Kramers sites [15,i&

replacing 14, i& and 15,j) replacing 14, j)] is also precisely
Ae, , = 4t'T2(R;,—) for all four choices of cr and o'.
Again this is no different from the vacuum bond energy,
so that, aside from the hard core repulsion, the effective
potential energy of interaction for two Kramers doublet
states is seen to be V(R;, ) =—0 in our model.

Quasiparticles, their motion, and their interactions
Aside from the zero-range hard core we saw that there
are no matrix elements which yield a finite two-body
potential energy V(R;, ) [12), yet there are some in H'
which help lift the translational degeneracy. Configura-
tion 14, i& 15,j) is degenerate with 15, i& s 14, j), in
which charge is transported. We calculate the correspond-
ing matrix element and, after lengthy algebra, find it to
be precisely +6T(R;,)T(0)t*. To keep track of an ever-
increasing number of excited configurations and their mo-
tion it is helpful to introduce "quasiparticle" operators
which operate on the vacuum, i.e., which create configu-
rations of the type 15,i) out of the 14, i) ground-state con-
figurations. Denoting them d5 (R;), we can now write
their Hamiltonian
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Fig. 1. The vHS is at co = 2, i.e., at z = 12t*T(0) =
22.994194. . . t*. As electrons are introduced, the energy
changes to a(k) —p, . Here p, ) 0 and increases mono-
tonically with the number of added electrons. Equa-
tions (12) supplemented by the no double oc-cupancy rule
provide a genuine many-body Hamiltonian, essentially a
t Jm-odel (with 1 = 0) for the d quasiparticles. For a
derivation of J 4 0, see Ref. [9].

The band of hole quasiparticles which can be con-
structed out of the ~3, i) states is the mirror image of
this d band when the average cell occupancy is 4. But
as more electrons are added, the energy of the hole band
increases as follows: a(k) + p, .

Triplets carry zero charge relative to the ground-state
~4, i)*s, hence H' cannot transport them in a background of
~4, i)'s and their energy is not changed by ~p. The energy
to create one triplet is e = 8T2(0)r* = 29.374052. . . t', as
quoted earlier. They are affected by the presence of d par-
ticles. With o. the spin operator of the fermion at R; and S
that of the spin-one entity at R, the effective interaction is
determined to be Hd „;~~„=t*2T(0)T(R;,) [S o. + 2]p;,
where P;, is the permutation symbol which interchanges
the two states. Triplets can annihilate against each other
and against other excitations, thus they have a finite life-
time.
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