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Interedge Interaction in the Quantum Hall Effect

Yuval Oreg and Alexander M. Finkel'stein*
Department of Condensed Matter PhysicsT, he Weizmann Institute of Science, Rehovot 76100, Israel

(Received 13 June 1994)

We consider the effects of the interaction between electrons drifting along the opposite sides of a
narrow sample under the conditions of the quantum Hall effect. A spatial variation of this interaction
leads to backward scattering of collective excitations propagating along the edges. Experiments on
propagation of the edge modes in samples with constrictions may give information about the strength
of the interedge electron interaction in the quantum Hall regime.
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A potential, which confines a two-dimensional electron
gas inside a sample, leads to the formation of the so-
called edge states near the boundaries of the sample in
the presence of a magnetic field [1]. When the chemical
potential lies in a gap of the bulk levels the role of the
edge states becomes dominant and many experiments in
the quantum Hall regime may be interpreted by transport
of the edge electrons [2,3] or by propagation of collective
edge modes [4—6]. The collective edge excitations are
analogous to the edge magnetoplasmon modes [7], but
under the conditions of the quantum Hall effect the
specifics of the energy spectrum of the electrons near the
edges makes these modes rather peculiar [8].

In this work we discuss effects of the interaction be-
tween electrons drifting along opposite sides of the sample.
These effects may be observed at time-resolved transport
phenomena in samples with a nonconstant effective width,
e.g. , in a strip with constrictions. We show that the vari-
ation of the interedge interaction due to the constrictions
leads to backward scattering of the collective excitations
propagating along the opposite edges. The scattering of
waves from one boundary of the sample to the other one
is not related with the direct hopping of electrons between
the edges. Because of a long-distance electron-electron
interaction this scattering may happen when the electron
hopping from one side of the sample to the opposite one is
completely forbidden. For a particular sample with an ex-
tended constriction, which acts as a semitransparent cork,
one may observe oscillations in the transparency of the
sample as a function of the frequency of the edge wave.
The magnitude of the effect gives information about the
strength of the interedge interaction, while the period of
the transparency oscillations provides one, for a given geo-
metry of the sample, with the value of the velocity of
the collective edge modes. In samples with rough bound-
aries the backward scattering of waves on random inhomo-
geneities of the boundaries opens a channel for relaxation
of the electrons at the edges. This mechanism will be dis-
cussed in the final part of the paper.

The strength of the interedge interaction depends on
the particular electrostatics of the sample. We intend
to present here only a general idea of the study of the

interedge electron-electron interaction. For this purpose
we shall take as a base a simple picture of an abrupt
potential near the edges when the transition between the
filled and empty states is sharp. We believe that in such
systems the phenomena related with the interedge electron
coupling will be more pronounced compared with the
systems where gate-confined electron density slowly varies
in the lateral direction. For simplicity, we restrict the
present discussion to situations when there is only one pair
of edge states, i.e., when the filling factor of the lowest
Landau level v = 1/n where n is odd [9]. Below, we
concentrate on the case v = 1 and we will comment upon
the fractional filling in the concluding part.

To begin with, we consider the effect of the electron-
electron interaction on the Hall conductance. It will be
shown that despite the fact that the diamagnetic cur-
rent along the boundaries is affected by the interaction,
the static limit of the Hall conductance is still quantized
when backward hopping of electrons from one edge to
the opposite one is absent. This point was already dis-
cussed in Ref. [10], but now it will be proven in a rather
general way.

We concentrate below on excitations with energy
much smaller than the cyclotron frequency. Therefore,
the transversal motion of electrons can be excluded by
means of the adiabatic approximation. Then, only the
longitudinal motion along the strip remains essential,
and, finally, one comes to the picture of effectively one-
dimensional fermions. The momentum quantization along
a conducting strip of a quantum Hall device k„= 2~n/L,
(n = 0, ~1, ~2, . . . ; L, is the length of the strip along
the drift direction) leads to quantization of the center of
the orbit of magnetized electrons according to y = l~k„,
where l, = Qftc/eB is the magnetic length. The momenta
k„and k~ of the last occupied states at the "upper"
and "lower" edges correspond to the ~kp of the 1D
electron gas, while the drift velocity of the edge electrons
is the analog of the bare Fermi velocity. The main
difference of the effective one-dimensional theory at hand
from the conventional 1D electron gas is the absence of
time inversion symmetry: Particles which are moving in
opposite directions are spatially separated and may have
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different velocities. For free electrons the quantization of
the conductance can be easily obtained in this picture [11].

Let us now discuss the quantization of o-,~ in the pres-
ence of electron-electron interactions. Because of the mu-

tual coupling of electrons drifting along the edges, their
velocity is renormalized. A convenient and economical
way to describe the velocity renormalization is to derive
the current operators using the continuity equation. When
hopping of electrons from one edge to the other is absent
the species of electrons on each boundary are well de-
fined, and we can apply the continuity equation for each

edge current separately,

l d eJ,l(p) = ——ep. ,~(p) =
~

[H. p. ,r(p)],
p dt ' kp

where H is the Hamiltonian of the system, and the op-
] terators pu ~(p) =

~~ gq q, , ak+„al, describe the creation
of charge density excitations on the edges. For the part
of the Hamiltonian that describes excitations with energy
less than the cyclotron frequency the bosonized represen-
tation [8,12] will be exploited:

1
H = 7r g v„p„(p) p„(—p) + rr P v~ p~( —p) p~(p) + —g W, (p) p„(p) p„(—p)

1+ —g W~(p) pi( —p) p~(p) + g U(p) p~(p) p„(—p) + anharmonic terms.
2

p P

(2)

Here the terms with v„and vI represent the energy
spectrum of magnetized electrons linearized near the
edges, while the nonlinear part of this spectrum can
be written in the bosonization technique in the form
of an anharmonic interaction [13]. The amplitudes W„~
describe the intraedge Coulomb interaction which is
responsible for the enhancement [4,7] of the velocity of
the edge modes. The U term describes the interedge
electron-electron interactions. In fact, our consideration
holds for any Hamiltonian H(p) describing the edge-state
physics by means of a functional of the p operators.
The p, t operators in Eq. (2) have the standard 1D
commutation relations [8,14],

[P.(—P), P.(P')] = I:Pi(P) Pl( P')] = 2—
[pi(p), p. (—p')] = o (3)

For operators commuting like that, performing
commutation is equivalent to differentiation, i.e.,

[F(p„l),p„~(q)] = ~(q/27r) BF(p, ~)/&p„I( q). There-—
fore we can rewrite J„& in Eq. (1) as

e BHJ.r(p) = —, (4)
27T6 Bpu I p

On the other hand, by definition, the chemical potential of
the edges is

BH
put(p) =

( )
.

Thus, for the total current I = J„+JI we obtain

1
H =

2
dx dy[V„(x, y) p„(x) p„(y)

+ V, (x, y) p&(x) p&(y)

+ 2U(x, y) p. (x) pi(y)]. (7)

In order to diagonalize the Hamiltonian (7) we will write

p„~ operators as

p. (x) = P pr( —n) n-. (x) —pi&( —n) X.(x),

p & (x) = g p i i (n) rI-. (x) —p r (n) X.(x),

a result, these corrections proved to be canceled in the
ratio that determines the conductance. Provided that
there is no electron hopping between the edges, this
fact is obtained here relying on the representation of the
Hamiltonian as a functional of the p operators. Such
representation is not well defined, however, when the
density of states at the Fermi energy is singular. For
that reason direct application of the above consideration
to a system with alternating strips of compressible and
incompressible liquids [15] is not possible.

Thus, the Hall transport in the static limit does not pro-
vide us with any information on the electron interactions.
With a purpose to reveal an effect of the interaction be-
tween electrons on different edges let us consider the prop-
agation of the edge modes in an inhomogeneous system.
Then, the general form of the bilinear part of the Hamil-
tonian (2) is

I(p) = [p'(p) —pi(p)]. (6)

This gives the quantization of the static Hall conductance
in units e /2' A(in fact, the qua, ntization holds for
any p, i.e., locally). It should be emphasized that the
electron interactions affect both the currents J„I and the
chemical potentials p, „I~ However, the structure of these
corrections is such that the total current is changed in
the same way as the difference of the potentials. As

where p& and p«are new operators still satisfying the
commutation relations of Eq. (3) in which p„~ p~ and

p~ p~~. The transformation (8) is an inhomogeneous
variant of the Bogoliubov transformation similar to the
one used in the theory of superconductivity [16]. This
transformation diagonalizes the Hamiltonian (7) if the
conditions [0,p~(n)] = v~(n) np~(n) and [H, p~~( —n)] =
v~~(n) np~~( —n) are fulfilled. To derive the equations for
the eigenfunctions of the wave modes g and ~, we rewrite
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commutation relations (3) in the coordinate form and
calculate the commutators [H, p„ i(x)]. Then, replacing

p, & by means of p & «we obtain

tv„rI„(x) = i

cu„g„(x) = i

dy[B V (x.y) rt (y) 8 U(x. y) y (y)]

dy[B, U(y, x) rj„(y) —8, Vi(x, y) y„(y)],

[V.(k) + Vi(k)]' —4U(k)',

where V„i(k) and U(k) are the Fourier transforms of the
potentials. The amplitudes V„ i(k) may have a logarithmic
dependence on k, if the Coulomb interaction is not effi-
ciently screened.

Without losing generality it will be assumed below that
all effects of inhomogeneity are only due to U(x, y). When
the wavelength of an eigenmode is much shorter than the
characteristic length on which the potential U changes, the
adiabatic approximation can be applied. In that case, the
propagating modes adjust themselves to the local value of
the interaction U and no reflection occurs. The opposite
situation, for which the sudden approximation is valid,
occurs when the wavelength of the eigenmode is larger
than the region where the potential U alters. It can be
realized either in a sample with a sudden narrowing of the
conducting strip or in a sample, which is partially covered
by a metallic gate or by a material with a different dielectric
constant. We will model this situation by a potential
U(x, y) that vanishes at x, y ( 0, while for x, y ) 0 we
take U(x, y) = U6(x —y) assuming that the characteristic
length of the action of the potential U(x, y) is shorter
than the wavelengths of the eigenmodes. Consider now
a mode propagating along the upper edge to the right.
When the incident wave reaches the region of the interedge
interaction a backward wave is excited on the lower edge,
since in the presence of interedge coupling the eigenmodes
are built from waves which are located on both sides. By
matching the wave solutions for the semi-infinite strips, we
find the transmission coefficient of the incident wave T =
(1 + r(1 + r)) ', where r = [(V„—2rrvi)/U]~ For the.
case of symmetric boundaries, when V, = Vt = V, the
velocity v& = v'V~ —U2/2rr, and for U (( V we obtain
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T = 1 —
2 (U/V)' (10)

(9)
where ~„=vt(n) n, and a pair of equivalent equations
with cv „=vii(n) n I.n the presence of the interedge
interaction the eigenmodes are not localized anymore near
one of the edges, but are combined from excitations which
are located on both sides. These modes can still be
classified as left and right movers. In the homogeneous
case when the potentials V„i(x,y) and U(x, y) depend only
on x —y Eqs. (9) reproduce correctly the well-known
solution of the Tomonaga-Luttinger model [14], which

gives two modes propagating with the velocities

1
vt, tt = — V.(k) —Vi(k)

4m

Another geometry that we consider is a sample in
which interedge interaction acts inside a constriction of
length L;„, : U(x, y) = UB(x —y) for 0 ( x, y ( L;„, and
is equal to zero otherwise. In such a free-interacting-free
(FIF) junction we find that, due to the multiple back and
forth reflections, the transmission coefficient oscillates
according to

1 + lU/Vl2 sin 2rr~L;„,/V

Here it was assumed again that V, = V~ = V and U && V.
These oscillations resemble the oscillations of the differ-
ential resistance of a superconducting junction, caused by
the Andreev reAection and known as the Tomasch oscilla-
tions [17]. An experiment on a FIF junction may provide
us with information about the magnitude of the interedge
interaction.

Now consider the reflection of edge waves due to
inhomogeneities of the boundaries. In resonance experi-
ments on quantum wires or annulus samples this reAection
mechanism can determine the width of the resonance. A
random variation of the shape of the boundaries creates
a random sequence of potentials, which are similar to the
potential that was studied at the derivation of Eq. (11).
Assuming that the typical length of the inhomogeneities,
L,„„ is smaller than the wavelength, we model this
situation by the interedge potential

U(x, y) = g U;(x —a;) 6 ),I ni.

(12)

where a; are the locations of the inhomogeneities and U;
are some short range potentials.

The propagators of the edge waves will be defined by
23,(i)(x —y, t —t') = —i(T(p, (i~(x, t) p, (i)(y, t'))). In the

q, co representation the free propagators are given by

0

cu —v)q + i6sgn(q)
'

rD0
co + vi) q —i Bsgn(q)

(13)

23, (q, co) =
co —viq + i viq/Iculr

where r„(co) ' = c(L;„,U;/viivi) co2, and a similar ex-
pression for D~. The result for 7 ' is consistent with

In the presence of the potential (12) the averaged propaga-
tors 23, &

can be found by averaging over a; as in the case
of electrons scattered by random impurities [18]. For the
self-energy X of the Dyson equation we obtain in this way

2 2c 2 2 0 . Lln~»t~ u(l) L;,t U; i(, )(q) dq = —ic
277 2vz z(])

(14)
Here U, is the I"ourier transform of the potentials U, , the
bar means averaging over the scatterers, and c denotes their
concentration. Thus the averaged propagators are



VOLUME 74, NUMBER 18 PH YS ICAL REVIEW LETTERS 1 MAv 1995

1/r&&(t) (8) Xt(„)(to) g„(t)(e —to, q) dq dto. (17)

Here the integration with respect to the momentum
variable q in the electron Green's function g should be
performed independently of X. This yields I/r'(~) ~ e2

(or ~ T2 at finite temperatures). The time r' determines
the rate of the equilibration of electron states on the
opposite edges.

In summary, we have discussed the effects related with
the interedge electron interaction in the quantum Hall
regime. We have shown that experiments on propaga-
tion of the collective excitations in samples with constric-
tions may give information about the amplitudes of the
electron-electron interaction which are determined by the
conditions of the screening. We expect that the interedge
coupling effects will be considerably stronger in systems
with a sharp transition between filled and empty states,
which were under discussion here, compared with the sys-
tems with slowly varying electron density, where electron
screening dominates [15]. Such effects may help to dis-
tinguish between these two types of systems.

The discussion above was related to the case when
the filling factor v = 1. In the case of the fractional

Eq. (11) in the long wavelength limit (2rrv/to » I;„,).
The obtained ~2 dependence of the scattering rate is a con-
sequence of the general properties of wave scattering in
continuous mediums. When the space quantization is es-
sential and the level spacing becomes larger than ~ ', the
integration in Eq. (14) should be substituted by summation
over discrete momenta. In that case, the question of the
symmetry between the boundaries becomes delicate. For
symmetrical boundaries a self-consistent treatment of the
resonance width gives r ' ~ ~c0~.

The obtained result allows us to discuss the absorption
of an electromagnetic field when the external electric field
is parallel to the edges. Using the continuity equation we
get from Eq. (15) the absorption coefficient,

2

(16)
M 7u N 7~ N

In the continuous case, when the level spacing is less than
~, I', the adsorption coefficient does not depend on the
frequency of the ~ behavior of 7.„I'.

An interesting mechanism for electron relaxation arises
as a consequence of the random spatial variation of the
interedge interaction. For a homogeneous system the en-

ergy and momentum conservations forbid an emission of
waves propagating opposite to a motion of the electron,
Because of spatial inhomogeneities, the momentum con-
servation does not restrict the decay process anymore.
After averaging over the inhomogeneities, the expression
for I/r'(a) determining the rate of emission of the edge
waves can be written as

filling with v = 1/n (n is odd) the physics of the two
collective edge modes will be described, we believe, by
a phenomenological Hamiltonian H(p) of the type of
Eq. (7). The specifics of the fractional state reveals in the
commutation relations for p operators: on the right hand
side of Eq. (3) the factor v appears [8]. This modification
does not alter the physics of the discussed phenomena.
However, certain corrections should be performed, e.g. , in

Eq. (11) in the argument of the sinus a factor v ' should
be introduced, because now vi i ~

~ v.
This consideration is related to wavelengths which are

shorter than the sample length. When the velocity of the
edge mode is about 10 cm/sec as in the experiments
of Refs. [5,6], for a sample with length of the order of
1 mm the frequency should be about 1 GHz. Presumably
a geometry convenient for studying the effects of the
interedge interaction is a pair of coupled rectangular mesas.
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