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The optimized effective potential (OEP) yields eigenfunctions which minimize the expectation value
of the Hartree-Fock Hamiltonian (in this case with an added local-density-approximation correlation

energy functional).

Using an approximate OEP, which yields Ge eigenvalues and total energies to

within a few meV of the exact OEP, we find the Ge indirect gap close to the experimental value and the
direct gap somewhat too large. The cohesive energy is 1.2 eV less than the experimental value from
which we conclude that standard correlation energy density functionals are inadequate for covalently

bonded systems.

PACS numbers: 71.25.Cx, 71.25.Rk, 71.45.Nt

It is well known that Kohn-Sham (KS) [1] eigenvalues
do not represent excitation energies except that the highest
occupied eigenvalue equals the ionization energy [2].
Therefore the reason for the exceptionally small KS gaps
in semiconductors (over 100% too small in Ge) has been
a question of some concern. Using an exactly solvable
model, Gunnarsson and Schonhammer [3] concluded that
most of the gap error is due to the use of the local
density approximation [1]. However, Godby, Schliiter,
and Sham [4] using an exact relationship between the
exact KS exchange-correlation potential V,. and the self-
energy concluded that more than 80% of the gap error
(in Si) is due to an intrinsic discontinuity between the
N and N + 1 electron V.. This discontinuity arises from
a discontinuity in the slope of the xc energy functional
E«lp] at n = N, where the number of electrons n is
considered a continuous variable [5]. Because no attempt
[6,7] to construct a legitimate [8] KS V. beyond the local
density approximation (LDA) has resulted in much better
energy gaps, the latter conclusion has become generally
accepted.

We [9] recently showed that a Slater [10] exchange po-
tential, which we called the average Fock approximation
(AFA), is an approximate KS exchange potential in that
it can be obtained as a partial functional derivative of the
Fock exchange energy. We [11] then performed calcula-
tions for Ge and GaAs in which the valence electrons ex-
perienced Hedin-Lundqvist (HL) [12] correlation among
themselves in addition to the AFA exchange potential, ob-
taining the direct and indirect gap in excellent agreement
with experiment. Although this result casts some doubt
on the conclusion that the KS gap errors are due mainly
to the V. discontinuity, it is not conclusive because the
AFA is not a true KS potential.

The optimized effective potential (OEP) is that mul-
tiplicative potential whose eigenfunctions minimize the
expectation value of the Hartree-Fock (HF) Hamiltonian.
The integral equation determining the OEP was first ob-
tained by Sharp and Horton [13], who suggested two ap-
proximations. The more severe of these approximations
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to the integral equation resulted in the AFA. Talman and
Shadwick [14] were the first to apply the OEP to atomic
calculations. Krieger, Li, and lafrate [15] cast the less
severe approximation of Ref. [13] in a more transparent
form (hereafter called the KLI approximation) and then
[16] compared the total energy of every atom from Li to
Hg in the HF, OEP, and KLI approximations. So far as
we are aware neither the OEP nor KLI approximations
have ever been applied to calculate the total energy or
electronic structure of a solid [8].

The KLI approximation may be obtained via a simple
plausibility argument without any reference to integral
equations or Green’s functions. Slater obtained the AFA
by taking an average of the HF potential seen by the ith
electron with spin o,
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Obviously, the N lowest eigenfunctions of the HF poten-
tials of Eq. (1) yield the lowest total energy of the N-
electron HF Hamiltonian and the N lowest eigenfunctions
of Vaga yield a somewhat higher expectation value of the
HF Hamiltonian. Now, again obviously, replacing vie(r)
by vyr(r) + C;, where C; is an arbitrary constant does
not affect the HF eigenfunctions. Thus taking Slater’s
weighted average we obtain

VELI(I) = VEpa(r) + D Cinig(0)/ps @), (3)

where 7, (r) = ;o (0)¢h;o(r) and p, =3, Ciniy. We can
see that the C; associated with states that are degenerate
by symmetry must be taken to be identical to maintain
the symmetry of the system and that a constant added to
all the C; just adds that constant to V¢ so that the C;
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are linearly related and one must be arbitrarily chosen. In
atoms it is customary, but not necessary, to choose the C;
of the highest occupied state of spin o to be zero so that
> Cinig(r)/po(r) will go to zero as r — . Our aim is
to find C; such that occupied eigenfunctions of Vgp(r)
will be as similar as possible to the eigenfunctions of
vile + Ci. A plausible way of doing this is to require
that (¢, |VKL1lYio) = ($ie|Viig + Cilthis) or in briefer
notation Vgr; = 7ir + C;. Inserting C; back into (3)
yields

VRii(r) = Vipa(r) + A

1

Ng—1
(VKL = Tie)his(r)/ps(r).
=1

G
Here #,,(r) is the charge density of a set of degenerate
states and N, is the number of such occupied sets.
Fractional occupation of a degenerate set does not occur
in a semiconductor and presents no problem for the atom
[17].
Equation (4) may be solved for V&, yielding

Ny—1

Vg = vige + D[ — M) "(Viia — o%5), (5)
j=1
where I is the identity matrix and
Mg = [ dr i 62,0 0)/pu(e). ©)

This result is identical to that obtained [13,15] by replac-
ing (e, — €)', appearing in a Green’s function of the
exact OEP by (€; — €)',

We first demonstrate that VSgp is a KS potential [18].
We then argue that V¢ yields results sufficiently close
to those of Vgp that we can draw conclusions concerning
correlation functionals and true KS potentials from KLI
calculations. We then describe our calculations for Ge
and present the results. Finally, we state our conclusions
which some may find surprising.

There are two ways to separate Ex.[p] into E,[p] +
E.lp]l. In one, E.p] yields the exchange energy of
KS wave functions. In the other, when E. is dropped,
E, is such that the KS equation reproduces the HF
charge density and total energy. In either case E. is
defined so that E, + E. = Ex.. Now V,. = 6E./6p
yields that charge density which minimizes the total
energy. If we assume E.[p] to be known to some
approximation and E,[p] to be unknown but to represent
the exchange energy of KS wave functions, then the
OEP yields eigenfunctions (and therefore charge density)
which minimize the total energy [19]. Therefore the OEP
is the KS potential in this case and without knowledge
of E,[p] the total energy may be obtained from E.[p]
and the Fock operator. The HF energy of atomic Ge
was calculated [16] to be —4150.7206 Ry, with the
OEP energy 0.0240 Ry above the HF and KLI energy
0.0060 Ry above the OEP. The 0.0006% discrepancy
between the HF and OEP energies would be included in
E. if correlation had been included in the calculation [20].
Furthermore, the OEP energy being exact except for errors

introduced by the approximation to E., the KLI error
is only 0.00015% in this case. KLI [16] also compare
their 4s; and 4p; eigenvalues of 0.9573 and 0.5706 Ry
with the OEP values, 0.9577 and 0.5734 Ry. In these
calculations valence electrons see the same exchange
potential as core electrons so this KLI approximation to
the OEP is much more severe than in our pseudopotential
calculations where only the valence electrons have their
exchange potentials averaged.

To obtain the KLI pseudopotential, a HF Dirac cal-
culation was performed for Ge in the spin unpolarized
4s]2 /24p12/2 ground state. Then with the core held rigid the
45124 p1/2 states were self-consistently recalculated [21]
using Vi 1(r) and valence HL correlation [12]. The unoc-
cupied 4ps/, 4ds, and 4ds;, eigenfunctions were then
calculated and the wave functions were extended node-
lessly (as in Ref. [11]) from r, back into the core to
form pseudofunctions; then the Schrodinger equation was
inverted to obtain pseudopotentials. The 2 + 1 aver-
age of the p,/(ds/2) and pss,(ds/;) pseudopotentials was
taken to obtain spin-orbit averaged pseudopotentials and
the p and d pseudofunctions recalculated to construct fac-
torized ionic pseudopotentials [22]. These pseudopoten-
tials were used in the crystal as well as to calculate the
total energy of the spin polarized KLI-HL pseudoatom
[23]. The energy of the pseudoatom lies 22 meV below
the —7.67 12 Ry of the AFA atom [11]. Even if the KLI
percentage error (relative to the exact OEP result) were an
order of magnitude larger than for the full atom, the OEP
result would still lie only 1.5 meV below the KLI.

The calculation of Vaga in the crystal has previously
been described [11]. We use the same 10 k-point sample
of the irreducible wedge of the Brillouin zone (BZ). There
are four occupied bands except for the (%%%) and (%%%)
k points where the highest band is twofold degenerate;
thus there are 38 different #;,, the highest lying one of
which is discarded, making M;; a 37 X 37 matrix. Each
;> 1s the charge from the full star of the wave vector at
each k point and band sampled. Thus 240 different states
[24] contribute to the 37 #;,. Starting from the AFA
eigenfunctions it took four iterations to converge the total
energy to 0.01 meV and the individual eigenvalues to
1 meV. The most time consuming part of the calculation
is updating V{g, after each iteration [25].

In Table I are listed the experimental and KLI direct
gap at I', indirect gaps to X and L, and cohesive energy
along with results from Ref. [11] using the core corrected
LDA, the HF core-LDA valence, and AFA exchange po-
tentials [26]. We note that the KLI gaps differ by small
amounts from the AFA in the direction to make the agree-
ment with experiment worse for each. Nevertheless, the
agreement with experiment is far superior to that obtained
from the LDA. Note in particular that the huge LDA I
error (over 100% if spin orbit splitting were included)
actually changes sign in the KLI approximation. Thus
we state our first conclusion which must be somewhat
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TABLE I. Energy gaps and cohesive energy (in eV) calcu-
lated in various approximations and compared with experiment.

Ll Xl FZ’ Ecoh
LDA* 0.115 0.630 0.018 4.472
HF-LDA 0.401 0.597 0.725 4.387
AFA 0.821 1.033 1.188 2.625
KLI 0.796 0.933 1.239 2.651
Expt. 0.84 1.3 £0.2 1.00 3.85

tentative because of our use of an approximate corre-
lation functional: The discrepancies between Ge energy
gaps that would be obtained from the exact KS potential
and experiment are small (compared to LDA discrepan-
cies) and of random sign. If E,. is taken to be a func-
tional of p(r) and n, the number of electrons, then V. is
discontinuous at integer values of n. This discontinuity
should yield the lowest energy gap correctly [2]. How-
ever, our KLI potentials assume a fixed number of elec-
trons, have no discontinuities, and therefore no eigenvalue
other than the highest occupied represents an excitation
energy. Thus there is no a priori reason to expect its bet-
ter V,. (in the sense that it yields a better total energy)
to yield better energy gaps. Because of the similarities
among diamond structure semiconductors, we would ex-
pect similar corrections in Si gaps. For reasons discussed
in Ref. [11], the I'y level is extremely sensitive to changes
in potential and L; somewhat less so. The bottom of the
Si conduction bands lies close to X;. We see in Table 1
that the KLI potential yields a much smaller improvement
for this gap than for the others. Similarly the Si direct
gap is between I',s5 and I'is. In Ge the LDA, KLI, and
experimental values for this gap are 2.555, 2.800, and
3.25 eV, respectively. Thus we expect the KLI poten-
tial to yield only moderate improvements to the Si gaps.
Therefore the importance of our first conclusion is not
that we obtained very good direct and indirect gaps in a
single case, but rather that KS gaps are not always much
too small as had been previously believed. It is perhaps
worth pointing out that the HF indirect gaps of Si and Ge
are about 5 times larger than the experimental values [27].
In many-body quasiparticle calculations [28] the effect of
correlation is to screen the Fock operator and thus reduce
all gaps to their experimental values. In density functional
theory, however, the exchange and correlation functionals
(and hence potentials) are additive. Thus our KLI calcu-
lation without correlation, rather than approximating the
HF gaps, will yield gaps that are smaller than experiment.
Note that » may be taken to be a continuous variable in
the KLI approximation and the integer discontinuity cal-
culated for atoms [15]. It would be extremely tedious to
calculate the discontinuity for a solid and furthermore the
gap it would yield would be the HF gap augmented by the
added correlation potential.

The KLI total energy lies 48 meV below the AFA
resulting in a 26 meV increase in the cohesive energy.
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Since the atomic fourfold ionization energy is about
0.26 eV above the experimental value after core relaxa-
tion effects have been included [29], the 1.2 eV error
in the KLI cohesive energy represents an error of about
0.94 eV in the crystal’s total energy. Although the LDA
cohesive energy is in better agreement with experiment, it
comes from crystal and atomic energies 4.09 and 3.47 eV
larger than experiment so that KLI total energies are
actually quite a bit better than the LDA. Nevertheless, the
fact that the KLI cohesive energy is so poor leads us to our
second conclusion: There is no simple correlation energy
density functional which is adequate for both atoms and
covalently bonded crystals. Exchange depends only on
ground state eigenfunctions, whereas correlation requires
the admixture of excited configurations and therefore its
functional dependence on the ground state charge density
is much more indirect. If we assume that the entire
cohesive energy error arises from correlation, we conclude
that a functional which yields the correct total energy in
the atom underestimates the correlation energy in each Ge
covalent bond by 0.6 eV. We believe that it is a general
result that for any standard correlation functional the
errors in the correlation energy for two different structures
will differ by a significant amount. Not only have we
found this to be true for the Ge atom and crystal, but
Phillips [30] found it to be the case when comparing small
Si clusters with different structures. We would predict
that the correlation energy of covalent bonds is generally
underestimated but would not use these results to predict
that the correlation energy causes an underestimate of the
cohesive energy for crystals other than semiconductors
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FIG. 1. The difference between the KLI and AFA potentials
along the (111) direction in Ge. The atom is at r =1,
the middle of the covalent bond is at »r =0, and r = 4 is
halfway to the far atom. In curve a, Vaga is calculated from
the same self-consistent KL.LI wave functions that Vg is; in
curve b, Vagpa is calculated from its own self-consistent wave
functions.
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when the exchange energy is calculated nearly exactly
as it is in the KLI approximation. Because the KLI
approximation yields the exchange energy nearly exactly,
one would expect it to always yield better total energies
than the LDA; however, it is possible that a fortuitous
cancellation of LDA exchange and correlation errors
might in some cases make their sum less than the KLI
correlation error.

Because the differences between the KLI and AFA total
energy and energy gaps is small, one might conclude
that their potentials differ only slightly. That this is
not the case is shown in Fig. 1. Finally, we note that
if it were possible to construct an accurate correlation
functional of KS ground state eigenfunctions [31], the
KLI approximation could be applied to both exchange and
correlation and accurate results obtained for total energies.
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