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The phase separation'of two-dimensional fluid mixtures was investigated with molecular dynamics
simulations. The behavior of both single-component and binary mixtures as a function of temperature,
volume fraction, and average fluid density was considered. In both systems, the diffusive coalescence of
clusters is the primary mechanism of growth. In binary systems, the shape transformations of merging
droplets induce important long-range flow in the system.

PACS numbers: 64.60.Qb, 05.70.Ln, 61.20.Ja, 64.75.+¢g

When a fluid is rapidly quenched from the disor-
dered, high-temperature, single-phase region of its phase
diagram to a point inside of the coexistence curve,
it orders kinetically [1]. A long-wavelength instability
creates a morphology of interpenetrating domains, which
grow to macroscopic size as time goes on. At late times,
this growth often involves a single, time-dependent length
scale, the average domain size R(¢), to which all spatial
quantities scale. For example, the time-dependent struc-
ture factor S(k, ¢), with wave number k, displays the scal-
ing behavior S(k,?) = R(t)?F(x), where x = kR(t), d is
the dimensionality of the system, and F(x) is the time-
independent shape function. Furthermore, the growth
of the average domain size often follows a power law
R(t) ~ t", with growth exponent n. This exponent is the
focus of much investigation, as it intimately reflects the
mechanisms which drive the phase separation process. It
is generally believed that the growth exponent together
with the time-independent shape functions characterize a
given universality class. For example, in binary-alloy sys-
tems growth is determined solely by the thermodynamic
forces driving the phase separation, so that the exponents
are independent of dimensionality of the system. They do,
however, depend crucially upon the presence of conserva-
tion laws for the order parameter. For a nonconserved
system (model A [2]), growth is curvature driven with an
exponent of % [3]. If the system involves a conserved or-
der parameter (model B), ordering takes place through the
diffusive transport of material through the bulk, i.e., the
classical Lifshitz-Slyozov mechanism, with an asymptotic
exponent of % [4].

In fluid systems, this situation is more complicated due
to competing and transient growth mechanisms brought
about by the hydrodynamic modes of the system. The
latter allows for the transport of the ordered domains, so
that droplet coalescence is important [5]. The predicted
scenario for 3D binary fluid mixtures is the following:
For low volume fractions, growth takes place via the dif-
fusive coalescence of droplets followed by a crossover
to Lifshitz-Slyozov growth. Both of these mechanisms
give a R ~ t'/? growth law, albeit with differing ampli-
tudes. As the volume fraction is increased, hydrodynamic
flow driven by surface tension effects becomes more and
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more important. Siggia then predicts a crossover to R ~ ¢
growth, valid for a symmetric quench [6]. Experiments
on fluids [7,8], as well as numerical simulations [9], have
verified aspects of this picture.

In contrast, the nature of the phase separation of 2D
fluid systems has remained controversial. For symmetric
quenches, Furukawa [10,11] has predicted a late-time ac-
celerated n = % growth based on inertial effects, while a
competing theory based on linear hydrodynamics predicts
n = 3 [12]. Numerical studies have also yielded conflict-
ing evidence: Langevin simulations of model H [13] and
lattice-gas simulations [14] are consistent with an n = %
exponent, while molecular dynamics (MD) simulations at
different densities have yielded both values [15,16].

To address the nature of phase separation in 2D fluid
systems [17], we have carried out extensive MD studies of
both single-component and binary fluid mixtures, which
involves the coupling between a conserved order param-
eter (relative fluid density) and the velocity fields of the
fluid. Simulations as a function of temperature, volume
fraction, and fluid density were carried out. We find that
for single-component fluids and off-symmetric binary fluid
mixtures, quenched into the unstable region of the phase
diagram, the coalescence of droplets is the most impor-
tant growth mechanism, with exponents n = 5. For sym-
metric quenches of binary fluids, growth is consistent with
n = % based on the diffusion and merging of interfaces as
predicted by linear hydrodynamics. We find no evidence
of any significant Lifshitz-Slyozov growth over the time
scales of our simulations.

We now give details of our simulations. Atoms of the
single-component fluid were modeled with the cut and
shifted (12-6) Lennard-Jones potential (cut off at 2.5¢0),
for which the phase diagram is well known [18,19]. The
binary fluid mixture consisted of two species, labeled
A and B. The interaction potential was taken to be an
extended (12-3) Lennard-Jones potential of the form

12 3
U(rl-j) = 46[(1) - (26[,1‘ - 1)(”9;) } N
r,-j r,-j

where r;; = r; — r; is the distance (truncated at 4.20°), be-
tween the species i and j. Forces between “like” species
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are therefore attractive and repulsive between “unlike”
species. The specific form of these potentials was chosen
so as to make contact with previous simulations [15-19].
Square systems with periodic boundary conditions were
used. Simulations were carried out for ~17 000 atoms
over density ranges of po? = 0.2 to 0.8, using the stan-
dard Verlet algorithm [20]. Velocity rescaling was used to
keep the systems at a constant temperature, although some
constant energy simulations were carried out [18]. Gener-
ally, an integration time step of 0.027 (single-component
system) and 0.0057 (binary mixture) was found to be ade-
quate, where the time scale is 7 = (ma?/€)"/2. The time
step was, however, further reduced at high temperatures.
Unless otherwise indicated, all the data presented were av-
eraged over at least ten independent runs. Initial config-
urations were prepared by scaling atoms on a hexagonal
lattice to their proper density, and then, in the case of a
binary mixture, labeling them A or B at random, in their
proper proportion. Volume fractions ¢ between 0.1 to 0.5
(symmetric quench) were simulated. During the simula-
tions, a number of quantities were monitored. Chief of
these was the circularly averaged structure factor S(k, 1),
from which two measures of length were obtained: R (z) =
2 /k(t), where k;(t) denotes the first moment of the struc-
ture factor; and R.(z), which denotes the first zero of the
pair-correlation function g(r, 7).

We first present the results for the single-component
fluid. Figure 1 shows sample configurations for a criti-
cal quench (po? = 0.325) at different temperatures. Af-
ter the quench, the system forms small, finite-sized,
irregularly shaped domains. Growth takes place primar-
ily through the coalescence of these domains: Monomers,
which move ballistically and strike the domains, set the
clusters into linear and rotational motion. These then per-
form inelastic collisions with other clusters which then
coalesce. At the same time, the surface tension acts to
reshape the cluster into a circular shape, thereby reducing
the surface free energy. At low temperatures, this process
is almost completely inhibited so that a variety of “lattice
animals” form. High temperatures are almost completely
dominated by critical fluctuations.

The effective growth exponents for the single-
component system over the entire temperature range is
shown in Fig. 2. This curve was obtained by fitting R; by
a power law form over ~5007. Other measures of length
show similar behavior. The growth exponents display
a maximum value of n = 0.55 * 0.06 near 7 =~ 0.727,
consistent with a coalescence mechanism of clusters [21].
Indeed, an examination of the simulations shows that
the rate of diffusion is maximized at this temperature.
At lower temperatures, the rate of cluster diffusion is
reduced, giving lower exponents over the time scale of
the simulation. At the lowest temperatures, the clusters
are almost completely frozen.

At temperatures greater than 7 ~ 0.727,, critical fluctu-
ations play an important role: monomers proliferate, the in-
terfacial roughness becomes large, and the definition of the
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FIG. 1. Sample configurations showing phase separation in a
single-component fluid as a function of temperature: (a) T/T, =
0.89, (b) T/T. = 0.71, and (c) T/T. = 0.54, at times 207,
2007, and 4007, left to right panels, respectively.

¥

cluster becomes ambiguous. In this regime, length scales
should be measured in terms of the correlation length
&= 1 —T/T.)"” and times in terms of the correlation
time 7; = £%, where v and z are critical exponents. In-
deed, good data collapse is achieved for 7 = 0.757, with
v =1, n = 0.25, and z = 4 — 7 consistent with the dy-
namical scaling hypothesis (see inset of Fig. 2) [22]. Thus,
our simulations in the critical region are essentially at
“early times” with regard to the phase separation processes

1.25

1.00 |~

o

N

a
T

o
o
o

Exponent (n)

0.25 |~

0.00 2 L L " L
0.0 0.2 0.4 0.6 0.8 1.0

Temperature (T/T¢)

FIG. 2. Effective growth exponents n as a function of tem-
perature for single-component system. The open symbols
are exponents derived from constant energy runs (four runs).
The inset shows the scaling of R.q = [Ri(¢) — R(t = 0)]/¢&
Vs t,le/dz = (¢/7¢)'? in the critical region: circles, T = 0.76T,;
squares, = 0.807,; diamonds, T = 0.857.; and triangles,
T = 0.897,. Data are obtained from at least ten runs, except
at T = 0.187,, 0.35T., 0.84T,, and 0.897., which are from at
least four runs.
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[19]. This also explains the differences between constant
temperature and constant energy runs observed in previ-
ous simulations [18]. In the constant energy simulations,
the actual temperature of the system rises because potential
energy is converted into kinetic energy as the phase sep-
aration proceeds. Thus, for constant energy simulations
with initial 7 = 0.54T,, the actual temperature of the sys-
tem is such that the system is in the critical regime, and
the growth exponent decreases. To test this, we have car-
ried out a number of constant energy simulations for initial
T = 0.54T, and 0.80T.. These runs, however, have actual
late-time temperatures of 0.737, and 0.867T, respectively
[23]. The growth exponents at these actual temperatures
are close to those of the constant temperature runs.

We now turn to phase separation in binary fluid mix-
tures, at high fluid densities. Figure 3 shows sample con-
figurations (po? = 0.74) for different volume fractions.
After a symmetric quench, the instability forms a com-
plicated and now interconnected network of ordered do-
mains, which then coarsens via the diffusion of interfaces.
In the case of off-symmetric quenches, isolated droplets
form and grow via droplet coalescence. As in the case
of the single-component fluid, there is no evidence of any
Lifshitz-Slyozov growth.

Figure 4 summarizes the measured growth exponents
for the binary fluid mixture, as a function of both tempera-
ture and volume fraction. In this case the exponents were
obtained by power law fits to R., although other measures
of length gave completely similar results. In general, the
behavior of the growth exponents with temperature shows
trends similar to that of the single-component fluid. For
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FIG. 3. Sample configurations showing phase separation in
binary fluid system for different volume fractions: (a) ¢ = 0.5
(symmetric quench), (b) ¢ = 0.3, and (c) ¢ = 0.1 at times
57, 12.57, and 52.57. Only the minority species is shown.
Other parameters are po? = 0.74 and kzT /e = 2.
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off-symmetric quenches, the maximum growth exponent
is achieved at intermediate reduced temperatures k3T /€ =
12 to 16. At lower temperatures, the growth law is always
reduced, reflecting the decrease in the rate of droplet diffu-
sion. For off-symmetric quenches at low temperatures, the
system is virtually frozen over the time scales of the simu-
lations. The growth exponent is largest for the symmetric
quench. For temperatures less than 20, n = 0.46 = 0.05
consistent with the #!/? law based on linear hydrodynam-
ics. At high temperatures, the growth exponent decreases
because of the high thermal fluctuations. Simulations at
all other fluid densities gave exponents n =< 0.5, consistent
with the coalescence mechanisms.

While diffusive coalescence is the main mechanism of
growth in both of the fluid systems, the source of the fluc-
tuations leading to the movement of droplets differs. In bi-
nary fluid mixtures, surface tension effects resulting from
the reshaping of droplets play a crucial role. Consider a
binary collision between two droplets. Just after touching,
the combined droplet has, roughly speaking, a nonsymmet-
ric, ellipsoidal shape. Surface tension then induces rapid
shape relaxations, which transform the droplet into a cir-
cular shape. This induces considerable flow in the sur-
rounding fluid medium, and, depending upon the specific
geometry of the system, induces multiple collision events
(see Fig. 5). This has recently been observed in experi-
mental fluid systems [24]. The effect that the induced fluid
flow has on the system depends very much on the droplet
size. For the low volume fractions, when the size of the
droplet is small compared to the distances separating them,
the effect of the induced flow is small. It does, however,
increase noticeably for ¢ = 0.30, when such events domi-
nate. In the case of a symmetric quench, when the domain
structure is percolating, the induced flow may dominate
and spread over a large fraction of the system. Naturally,
the shape transformations taking place after the merging
of droplets do not play such a role in single-component
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FIG. 4. Effective growth exponents n as a function of the
reduced temperature kz7 /e for symmetric ¢ = 0.5 (solid
circles, 14 runs for 7 = 20), ¢ = 0.30 (open squares, four
runs), and ¢ = 0.1 (open triangles, four runs). The inset shows
n vs ¢ for a reduced 7" = 2 (ten runs).
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FIG. 5. Partial configurations showing multiple coalescence
events for ¢ = 0.30 and a reduced 7 = 2. The sequence (a) to
(i) shows configurations beginning at 12.57, each a time period
2.57 apart.

systems. This is because there is no medium present so
that flows cannot be communicated readily throughout the
system. Monomer and small droplet collisions, as well as
thermal fluctuations, are the main causes of droplet move-
ment in single-component systems.

In summary, we have carried out extensive MD simu-
lations of phase separation of both single-component and
binary fluid mixtures, as a function of temperature, vol-
ume fraction, and fluid densities. The diffusion and sub-
sequent coalescence of droplets is the main mechanism of
growth, which give growth exponent n = % [25]. Over
the time regime of our simulations, there is no evidence
of an accelerated n = % growth. In binary fluid mixtures,
the reshaping of droplets during a collision event plays a
significant role in inducing long-range droplet flow.
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