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Simultaneous Bunching and Debunching of Surface Steps: Theory and Relation to Experiments
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We study a model of two-dimensional step flow where the velocity of a step depends predominantly
on the width of the terrace remaining behind it. While the uniform step train is unstable towards step
bunching, the bunches themselves are unstable and tend to debunch. This leads to patterns where slow
moving fairly straight bunches coexist with fast, strongly bent single steps, in qualitative agreement
with experiments on electric current driven step motion on Si(111) surfaces. Analytical predictions of
the shape and velocity of the single steps agree very well with Monte Carlo simulations.

PACS numbers: 61.50.Cj, 68.55.Jk

Several experimental groups [1—4] have shown that
the motion of surface steps on Si(111) surfaces during
evaporation by heating with direct electric currents de-
pends crucially on the direction of the current relative to
the step orientation. Current in one direction results in
stable step flow, with the motion of more or less uni-
form and straight steps. Current in the opposite direc-
tion causes the steps to bunch together and form complex
two-dimensional patterns. These exhibit very interesting
dynamical properties, with the exchange of single steps
between bunches. The microscopic mechanism responsi-
ble for these phenomena is very complicated and not at all
understood [5]; there are three temperature regimes where
the stable and unstable current directions change roles.
Electromigration, which is the major cause for the dete-
rioration of semiconductor electronic devices, has been
suggested [1,5] as a candidate. ln this work we propose
a mesoscopic model [6] delineating crucial features of the
physics on large scales, and achieve extraordinary quali-
tative agreement with experiment. We also make quan-
titative predictions that can be directly tested with new
experiments.

A wide class of instabilities in step flow during both
growth and evaporation can be understood in terms of a
simple model [7—9] of step fiow:

BX 8 X„" = f+(ltd. ) + f-(~.-i) + y, (1)
Bt Oy2

Here X„(y, t) is the position of the nth step at time t,
where y is the orthogonal coordinate along the step edge.
The step index n increases in the direction of step motion.
W„=—X„+&(y, t) —X„(y, t) is the width of the terrace in
front of step n The first two ter.ms [7] on the right-hand
side of (1) express the dependence of the velocity of a
step on the widths of the terraces in front and behind
it. They arise from an effective treatment of adatom
attachment, detachment, and surface diffusion [10], and
can be calculated explicitly using a microscopic theory
such as the BCF theory [11]. The last term [9(d)] of
(1) accounts for transverse step fiuctuations; 1/yq~ is the
relaxation time of fluctuations along the step edge of wave

number q, and y is directly related to the step stiffness
associated with step bending [12].

A straightforward linear stability analysis of (1) around
the uniform step train configuration with terrace width W
shows [7] that if

f ' (ltjt) ~ f ' (~), (2)

the uniform step train is unstable towards step bunching.
Here f' are the derivatives of f . The asymmetry in the
effective model may have several different microscopic
physical origins. One possibility, discussed by Schwoebel
and Shipsey [13], arises from the presence of different
energy barriers associated with the exchange of adatoms
between the step edge and the terraces in front or behind.
Another possibility is an asymmetry in the diffusion of
adatoms on terraces caused, e.g. , by couplings to external
electric fields or elastic strain fields.

To describe the long time behavior of an unstable sys-
tem of steps we have to take into account two impor-
tant physical effects that Eq. (1) does not treat. First,
we prevent energetically costly step crossings or over-
hangs by imposing a restriction of a minimal distance,
D,„, between steps. Some researchers [14] have sug-
gested simply stopping steps when the minimal distance
is achieved. However, this misses a second basic physi-
cal effect: the contribution to the step velocity from ter-
races other than the nearest-neighbor ones considered in
model (1). Consider for concreteness crystal growth (sim-
ilar considerations apply to evaporation). When the steps
are far apart, each step edge traps adatoms efficiently and
multistep jumps are suppressed [15]. However, when the
terrace widths approach the minimal distance, capture of
adatoms by steps in the bunch becomes less efficient be-
cause this would make some terraces even narrower, lead-
ing to an energetically unfavorable configuration. Thus,
surface diffusion over the entire bunch becomes more
probable. Within our step flow model, this is equivalent
to considering effective multistepjumps of adatoms, which
permit continued evolution of the step bunching process.
A reasonable way to take this physics into account is to
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modify Eq. (1) to

BX„
Bt

B Xf.(Z«l) + f (Z~'~) + &
By

for W„) D;„and BX„/Bt = 0 otherwise. Z~ (Z+l) is
the width of the first terrace in front of (behind) the nth

step that is larger than D;„.
We now analyze the stability of the bunches. We

find, quite surprisingly, that under some conditions the
bunches are unstable towards debunching. Consider first
the dynamics of a single bunch of N straight steps
separated by the minimal distance. Denote the width of
the wide terrace behind step 1 by Z~"~ and the width of
the one in front of step N by Zf~. Initially, only step
N can move. After it has moved a small distance, it
"sees" in (3) the narrow terrace directly behind it (which
hardly contributes to its velocity) and the wide terrace in
front. Therefore, the velocity of step N is approximately

f (Z«~).
Once step N has moved, step N —1 can move forward;

its initial velocity from (3) is approximately f (Z" ).
However, after it moves slightly, its motion is controlled
by the relatively narrow terraces directly behind and in
front, so step N —1 slows down significantly. Successive
steps behave in the same way until step 1 moves and slows
down within the minimal distance from step 2. Now,
according to (3), step N —1 can again move more quickly
and the entire process repeats itself. In effect, each step
moves with velocity f (Z~ ~) for an infinitesimal time
interval 6t, and then waits for the rest of the steps to move
for a time interval (N —2) Bt We the. refore conclude that
at least for a while, steps 1, . . . , N —1 stay in one bunch
that moves with an average velocity f (Z~"~)/(N —1).
Thus if

f.(Z"') ) f (Z"')/(N' —1),-(4)
step N will move faster than the N —1 steps behind it,
and will escape from the bunch. In this case the bunch
is unstable towards debunching, and releases a step that
moves into the terrace in front of it, until it reaches the
bunch ahead. This instability of the bunch leads to an
exchange of single steps between neighboring bunches.
Although this argument for the debunching instability
used a specific initial configuration of straight steps,
we expect it to hold in many experimentally relevant
situations where steps can bend. The bunches should
then remain straighter than the single steps moving on the
terraces, since the effective stiffness of a bunch of steps is
much greater than that of a single step.

In the limit relevant to the sublimation experiments
of Si(111) in the presence of an electric current, the
diffusion length (the average distance an adatom diffuses
before it desorbs) is large compared to terrace widths
[1,16]. Therefore f+(W) = k+ W, and f (W) = k W.
The uniform step train is unstable towards step bunching
when k ) k+, with k ) 0. (The net step velocity of

the uniform step train is non-negative by convention. ) If
k+ ) 0 as well [17], Eq. (4) will hold for small enough
Z~"~ or large enough N. We then expect to see the unique
signature of the instability mechanism discussed in this
work: simultaneous bunching and debunching of steps.

To test these ideas, we carried out Monte Carlo
simulations of the following two-dimensional coarse-
grained model of step flow. M steps, each consisting
of L segments, reside on a square lattice with periodic
boundary conditions in both directions. The position
of the yth segment of the nth step is denoted by
X„(y). Distances are measured in units of the lattice
spacing and time in Monte Carlo cycles. Each Monte
Carlo cycle consists of a "step How" sweep followed
by a "line tension" sweep. In a step flow sweep, we
first calculate the maximal possible distance of motion
for each individual step segment in one unit of time:

D„(y) —= k+Zn (y, t) + k Z~b~(y, t). To use this in our
lattice model, we define an integer distance I„, such
that I„(y) = [D„(y)] + 1 if a random number 0 ( x (
1 is smaller than D, (y) —[D„(y)]. Otherwise, 1,(y) =
[D„(y)]. Here [D„j is the integer part of D„. Next
we move all the step segments taking into account the
minimal distance restriction by setting X„(y, t + 1) =
X„(y, t) + min[I„(y), W„(y, t) —D;„]

The energetics of step bending is taken into account in
the line tension sweep. Here we choose a step segment
at random and attempt to move it forward or backward
with probability 1/2. If the move violates the minimal
distance restriction, it is rejected. If the restriction is not
violated, we reject the attempted move with probability
1 —exp( —PAE) if it raises the line tension energy by
an amount AE, and accept it otherwise. The line tension
energy is E = y/2P~ „[X,(y + 1) —X„(y)]2, and P is an
inverse temperature parameter. In each sweep this process
is repeated ML times.

We started the simulation with M = 30 uniformly
spaced straight steps of length L = 1000, and performed
repeated step How and line tension sweeps. The initial
terrace width was W = 50. In Fig. 1 we show a typical
configuration after 160000 cycles with Py = 0.2, k+ =
0.001, and k = 0.004. We find fairly straight bunches
(the thick lines) coexisting with single strongly bent steps
that reside on the terraces. These patterns differ dra-
matically from the ones we found for the Frank insta-
bility [9(d)]. We followed the dynamics of the system
and found that, indeed, the bunches move slowly and ex-
change fast moving single steps between them. We also
note that the single steps often arrange themselves into
surprisingly uniform crossing arrays, where successive
steps separate from a bunch into the terrace in front of
it, forming large angles with respect to the bunch in the
middle of the terrace, and then join the upper bunch. The
distance d between steps in a crossing array, in the direc-
tion parallel to the bunch behind, and their velocities (in
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As discussed above, the essential physics of both the
bunching and debunching instabilities is seen in the one-
dimensional limit. Thus we do not require the delicate
and inherently two-dimensional coupling of the diffusion
field and the line tension terms needed for Mullins-
Sekerka type instabilities. Since our model is accurate
near the relatively straight step bunches, it should properly
describe the way a crossing array initially separates from
a bunch, and the way it joins another bunch. Note that the
marginal stability ansatz we have used to derive the basic
relations (6) and (7) relies only on a linearization around
a solution of straight steps.

Moreover, while our description of the steeply angled
steps in the middle of a terrace is certainly inadequate, it
does keep those steps relatively straight. Using the full
curvature in the line tension term should not change this
behavior significantly. We expect that any reasonable ap-
proximation scheme which matches the nontrivial behav-
ior of the crossing arrays near the bunch behind to that
of the bunch in front would produce qualitatively similar
behavior between the bunches.

Thus we expect our results to be directly relevant
to experiments. Indeed, there is a striking resemblance
between the patterns obtained in the experiments and the
ones we get in our simulations. Both the thick fairly
straight bunches and the crossing arrays predicted by
our model (see Fig. 1) are observed in experiments (see
Fig. I of [3] and Fig. 1(c) of [4)). Moreover, Latyshev,
Krasilnikov, and Aseev [4] observed the escape of single
steps from bunches as described above. This strongly
suggests that an asymmetry of the type discussed in this
work, coupled with effective multistep jumps of adatoms,
is responsible for the interesting step behavior observed
in the experiments. It should be possible to measure both
q(A) and V(A) from the experimental data. One can then
evaluate the effective parameters of the model, k+, k
and y, and check the consistency of the predictions in (7)
and (8). To the best of our knowledge, this is the first
proposal for a direct experimental determination of these
important parameters from step patterns. We hope this
work will spur new experiments as well as more detailed
theories that will uncover the microscopic origin of the
basic asymmetry.
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