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We introduce the hyperspherical elliptic coordinates for the study of a class of three-body systems.
These new coordinates are well adapted to the singularities of the three-body potential and may be

regarded as a generalization of the familiar spheroidal coordinates for diatomic molecules.

However,

being defined on the hypersphere in six-dimensional space, the new coordinates formally resolve the
long-standing difficulties of the Born-Oppenheimer ansatz such as the laborious evaluation of non-
adiabatic coupling terms, a separate treatment of the mass-polarization effect, the need for the electronic

translational factor, etc.

PACS numbers: 31.15.+Ta, 03.65.Nk, 34.10.4+x

Recent experimental progress stimulated by the muon-
catalyzed fusion project on the one hand and by hopes
to get a closer insight on matter-antimatter coexistence
on the other, has rendered exotic three-body Coulomb
systems accessible. Among them Ps™ [1], e-H [2], muonic
molecules [3], mesic [4] and antiprotonic [S] helium, have
complemented more routinely known two-electron atoms
H, He, ... and diatomic molecular ions H,", HeH2", ...
giving a fresh incentive to theorists. From a theoretical
viewpoint, the two mass ratios defined by the two attractive
pairs provide key parameters of the problem. For real
systems these parameters vary over more than 6 orders of
magnitude. Whether the system as a whole forms a bound
state or not is immaterial here. Indeed, experiment often
centers on the observation of long-lived resonances and
their decay. What is required of a satisfactory theory is
the ability to handle the diverse mass ratios, to meet the
need for treating excited resonant states, and to achieve
the demanding high precision. This not only makes the
subject challenging but exacerbates the difficulties.

Though the general case is forbidding, two imaginary
systems “H~ and “H,", corresponding to two extreme
limits of the mass ratios, permit a simplification. The
former allows a single-center expansion on account of
the infinite mass of the nucleus and the repulsive nature
of the interelectronic interaction. The latter is a two-
center problem; it is completely separable in spheroidal
coordinates, providing the basis for many kinds of atomic
calculations. These two limits play a fundamental role in
our understanding of the three-body problem. It is vital
that in either case there is a choice of coordinates whose
singularities coincide with those of the attractive part of
the three-body potential. The bound states confined in
the potential wells can then be effectively expanded in
products of one-dimensional functions. Here we present
a new coordinate system whose singularities coincide
with two singularities of the interparticle interaction for
a general three-body system. In the two extreme limits,
these coordinates transform to that of “H~ and °°H2+,
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though they are not of any known type when the masses
are arbitrary.

Another facet of the three-body Coulomb problem that
motivates the present work is the earlier application of
the standard spheroidal coordinates to the solution of H™
and its isoelectronics [6]. Such an approach obviously
amounts to regarding H™ and H,* as twins, and leads
to a rule of thumb that relates the energy level patterns
between partners, hence to the level classification of
H™ according to the quantum numbers of the diatomics.
A major problem there is the inclusion of the strong
nonadiabatic coupling due to the Kinetic energy operator
as well as the reordering of the zeroth order levels as a
result of this inclusion. Though appealing, this approach
therefore seems to miss an important physical element
which turns out a posteriori to be the proper choice of
the coordinate system addressed in this Letter.

The kinetic energy operator for the three-body system
in a set of hyperspherical coordinates reads
L T R A_z)
2<R5 aRR aR  R2)° M
where x and y are the mass-scaled Jacobi vectors referred
to the center-of-mass frame. For the sake of simplicity,
we restrict ourselves here to the case of zero total angular
momentum L = 0. The square of the grand angular
momentum operator A? is then given by
I Sy R SO N isino—a—]. )
sin“y | dx ox sinf@ 46 a6
The hyperradius R and two angular variables y and 6 are
related to the Jacobi vectors as

lyl (xy)
R = 4/x% +y2, tan(y/2) = Ii_l cosf = IxIIny ,

(3a)

T =SB+ Ay =

0 =R =< o, 0=y = m,

0=6=w. (3b)

The two-dimensional manifold S, spanned by x and
6, together with the three Euler angles defining the
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orientation of the three-body triangle, form a hypersphere
in the six-dimensional configurational space of the system.
The potential energy V depends on three variables R, y,
and @ only, so only these three are relevant to the internal
degrees of freedom. The restriction L = 0 imposed above
permits one to disregard the Euler angles for now.

In the hyperspherical approach the relative motion of
particles on the hypersphere of a fixed radius R and
the radial breathing-type motion of the whole system
are considered separately. One first has to solve the
eigenvalue problem, parametrically dependent on R, for
the adiabatic Hamiltonian Hag,

Huy® = UR)D, Hy=3A+RC, (4
where C = RV is the effective charge, and then to include
the effects of nonadiabaticity via standard close-coupling
procedure. For Coulomb systems this approach was in-
troduced by Macek, though it had a conceptual precursor
in the Born-Oppenheimer expansion. Since the pioneer-
ing paper [7] the efficiency of this approach for *H ™ -like
systems has been demonstrated by many authors (see [8],
and references therein); the method works equally well for
a wide range of energy spectra below the double ionization
threshold, giving accuracy comparable to variational cal-
culations [9]. For systems closer to the “H,"* limit, such as
muonic molecules, the nonadiabatic coupling is expected
to be even smaller according to the Born-Oppenheimer
argumentation. However, the difficulties in solving the
adiabatic eigenvalue problem (4), caused by a sharp con-
centration of the wave function @ near the two attractive
Coulomb singularities of the effective charge C, prevented
achieving an accuracy and efficiency comparable with the
case of "H™. The actual reason for this lies in the inade-
quacy of the used coordinate system.

What is desirable to achieve by a proper choice of co-
ordinates on S is to make some essential part of the three-
body potential separable simultaneously with A2. For the
special case of “H ™ -like systems, the (x,#) coordinates
satisfy these demands excellently; both attractive interac-
tions admit separation simultneously with A2, which actu-
ally underlies the efficiency of the numerical scheme used
in [9]. However, for arbitrary masses these coordinates
can be adapted only to one of the three interparticle inter-
actions. There are two other known coordinate systems
considered by Smith and Whitten [10] and by Simonov
and Badalyan [11]. In both cases the operator A? is sepa-
rable but, in spite of many nice properties, neither of them
helps to diagonalize the adiabatic Hamiltonian.

We introduce new coordinates on S, which are some-
what resembling the elliptic coordinates in a plane.
In order to illustrate the following construction it is
convenient to represent S by one-half of a sphere in
three-dimensional space [“eastern hemisphere,” see (3b)]
though it actually belongs to a hypersphere in six-
dimensional space [12]. Here y and 6 correspond to the
usual spherical angles 6 and ¢, respectively. Let Z be
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the axis from which the angle y is measured (see Fig. 1).
Consider the rotation of a set of Jacobi coordinates (x,y)
into another set in six-dimensional space,

' —cosy —siny\[x

(y’>=< siny —COSY)<y>’ ®)
where y may be regarded as an arbitrary parameter at
this stage. This 6D rotation induces a rotation on the
3D image of S around its axis of symmetry by angle
2y. Let Z' be the new position of the Z axis under
this rotation. Using the new set (x’,y’), similarly to (3a)
primed variables R’ = R, x’, and 6’ can be defined, where
the angle x’ is measured from the Z’ axis. First, we
transform (2) from (y, #) to another pair of independent
variables (y, x’). The operator A? then acquires an
explicitly symmetric form. Recognizing that y and yx'
play the role of a pair of “radial” variables on the sphere,
measuring the “radial” distances from the Z and Z’ axes,
we define new coordinates in analogy to the construction
of the spheroidal coordinates, namely,

n=x—-x, (6a)
—2y =75 =2y. (6b)

E=x+x
2y = § =27 — 2v,
After some algebra, we come to our key equation,

16 9 J
A?= —————1—(cos2y — cos ) —
cosn —cosé|an an

d J
— = (cos2y — —t.
PY: (cos2y — cos &) FY;
(N
Thus, in the (£, 1) coordinates the operator A? is clearly
separable. These coordinates are illustrated in Fig. 1
[13]. The Z and Z' axes intersect the spherical shell

Z

ZI
2y

FIG. 1. Hyperspherical elliptic coordinates placed on the
surface of a sphere in three-dimensional space (y = 0.3). S
manifold mentioned in the text corresponds to the front half of
this sphere.
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at four points {£ = 7 £ (7 — 2y),n = 2y}, which
correspond to the singular points of the (£, n) coordinate
system. The positions of these singularities depend on the
rotation parameter y. In the two degenerate limits y — 0
and y — /2, two of the four singular points merge with
two others, and formula (7) can be transformed back to
(2). However, if one focuses on the behavior of the wave
function only in the vicinity of the two merging foci, say
{& = 2y,n = £2y} for y — 0 (this is the case of “H,"),
then curvature of S does not reveal itself, and by rescaling
& =2y¢ and n = 2yn' the operator (7) reduces to the
Laplace operator in the prolate spheroidal coordinates.
The general form of the effective charge in Eq. (4),
which admits separation of variables simultaneously with

dé

[8 a4 (cos2y — cosn) a Rb(n) — UY(R)cosn — A(R)}g(”q) =0,
dn dn

where A(R) is a separation constant. These equations are
similar to those encountered in the two-center Coulomb
problem [14]. Equations (10) should be solved simulta-
neously subject to the regularity condition of f(¢£) and
g(n) at the end points of the intervals (6b). This eigen-
value problem defines an infinite number of discrete pairs
of eigenvalues [U®(R),A(R)]; corresponding eigenfunc-
tions @ can be labeled by two indices n, and ns,
giving the numbers of zeros of f(£) and g(n). The sys-
tem of <I>,(,s,),,2 provides a complete and orthogonal basis
on S, which can be normalized with the volume element
dS = mw%(cosn — cos £)/4sin2ydé dn.

Now we turn to the three-body Coulomb system. Let
m; and Z; (i = 1,2,3) be the masses and charges of the
particles. For definiteness, we assume that Z, and Z, are
of the same sign, different from that of Z;. To define the
hyperspherical elliptic coordinates ¢ and 7, we introduce
two sets of Jacobi vectors (x,y) and (x',y’), where y and y’
join the pairs of oppositely charged particles 1-3 and 2-3,
respectively. Then the rotation parameter y in Eq. (5) is

given by
+ +
y = 21rctan\/m3(ml M2 m3), O=svy=m/2.
mimy
an
The effective charge C as a function of ¢ and 7 has the
o (£/2) + cos(n/2)
cos cos
C(&,m =4 ?

cosm — cosé
X [q" sin(&/4) cos(n/4) + q~ cos(¢/4)sin(n/H)] + Cs,

(12)
qi = 7,7, / myms3 + 7,7 / moms .
my + m3 my + m3

The first term in (12) includes both attractive interactions
and has singularities at the two points {¢ = 2y, n = *2y},

where

[8i(c05§ - cos2y)dd—ér + Ra(¢) + U(s)(R)cos‘f + A(R)}f({f) =0,

A2, reads

a(§) + b(n)

Cs , = )
(& m) cosm — cosé

®)

where a(¢) and b(7n) are arbitrary functions. For further
purposes, it is convenient to define an auxiliary separable
problem

H;;)q)(s) — U(x)(R)(I)(S)’ H;»;) = %AZ + RC,. (9)

Substituting the solution in the form ®© = f(&)g(n)
leads to ordinary differential equations for f(£) and g(7)

(10a)

(10b)

which coincide with two of four singular points of the
(¢, m) coordinate system. C3 corresponds to the repulsion
between particles 1 and 2; it has a singularity somewhere
on the line ¢ = 27 — 2v, though its particular form is
immaterial here. The two limiting cases of “H, " and “H ™~
correspond to y — 0 and (7 /2 — y) — 0, respectively.
The surface plots of the function (cos n — cos &)C(£, )
for H," and H™ with real masses are shown in Fig. 2.
Formula (12) suggests splitting of C(¢&, ) into two parts
C = C, + C,, where C; is of the form (8), thus it is sepa-
rable, while the residue C, can be diagonalized in the basis
fIJ,(,‘fZ,Z resulting from the solution of the separable part. This
splitting is not unique, though for each particular system
the appropriate choice of C;, which minimizes the effect
of C, can be found. For H," and H™, due to the small-
ness of y or (7 /2 — v), the functions shown in Fig. 2 ex-
hibit only weak dependence on 7 or &, respectively. This
gives a hint as to how to choose C; in these two cases.
The numerical procedure needed for solving the separable
problem (10) and constructing a basis @), is similar to
what is well developed in the two-center Coulomb prob-
lem [14]. The calculation of the matrix elements of C, then
can be done very effectively using the direct product of two
one-dimensional quadratures, arising from the solution of
(10). To test this algorithm we have calculated the ground
state energy of H™. Our result obtained with 45 coupled
channels is —0.527 447 which compares favorably with the
best available variational calculation —0.527 4458811 [15].
Note that with an increase of the number of channels the
calculated result approaches its final value from below, and
even 45 channels were found not enough to get conver-
gence in the sixth digit. Additional inaccuracy of the order
10~® may arise from the solution of close-coupled equa-
tions, though the accuracy of our adiabatic potential curves
is estimated to be much better. The same method applied
to H," gives for the ground state energy —0.597 144. In
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FIG. 2. Surface plots of the effective charge C(&,7n) times
(cos 7 — cos &) in hyperspherical elliptic coordinates: (a) H,",
y=33x1072%; (b) H, (/2 —y)=5.4 X 107*. The position
of the repulsive singularity corresponds to n = 0, ¢ =2(7 — 7).

this case 36 channels ensure convergence within six dig-
its, though even the one channel approximation gives a
very small error, ~ 1074, as could be anticipated intuitively.
We don’t know any variational calculations of the ground
state energy of H7 . The best known result —0.597 138, ob-
tained in the Born-Oppenheimer approximation with adia-
batic correction [16], is a little higher than our converged
value. The difference may arise from the inaccuracy of
our close-coupled scheme, though it may be due to some
imperfection of the adiabatic result [16] as well. We ex-
pect this method to apply to high-lying resonances with the
same level of precision.

Without delving into details, we note the presence of the
additional symmetry of the adiabatic Hamiltonian (4): For
the special case of v = 0, as well as for the general system
in two limits R = 0 and R — <, this symmetry is exact,
giving an additional integral of motion A(R). Otherwise
the symmetry is broken by presence of C,, though it still
holds approximately, and this approximation is the better
the sharper are regions of avoided crossing of adiabatic
potential curves.

In conclusion, it seems quite possible that the hyper-
spherical approach armed by the hyperspherical elliptic
coordinates is able to give, probably for the first time, a
numerically consistent way of treating a wide spectrum of
correlation and mass-polarization effects in the three-body
Coulomb problem. We also believe that the coordinates
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introduced in this Letter could find their wide applications
in theoretical study on chemical reactions [17].
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