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We search for alternatives to the trivial P~ field theory by considering nonpolynomial potentials.
Such theories are renormalizable when the natural cutoff dependences of the coupling constants are
taken into account. We find a continuum of fixed points, which includes the well-known Gaussian
fixed point. The Axed-point density has a maximum at a location corresponding to a theory with

a Higgs boson mass of approximately 2700 GeV. The Gaussian fixed point is UV stable in some
directions in the extended parameter space. Along such directions we obtain nontrivial asymptotically
free theories.
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The Higgs field of the standard model, usually taken
to be a scalar field with quartic self-interaction, has been
overshadowed by the issue of "triviality"; namely, the
renormalized coupling vanishes in the limit of infinite
cutoff [1). This has been verified by numerical calcu-
lations [2], and the implications for phenomenology have
been examined [3]. In terms of Wilsons's renormalization
group (RG) [1], the reason for triviality is that the contin-
uum (or infinite-cutoff) limit is identified with an infrared
(IR) Gaussian fixed point, so that the theory approaches
a free field theory in the low-energy limit. It is natural
to ask whether there are alternative continuum limits that
yield a nontrivial theory. As one of us [4] noted earlier,
in a p theory in 4 —e dimensions there are RG trajecto-
ries on which the Gaussian fixed point appears as an UV
fixed point. Theories built along these trajectories would
be nontrivial and asymptotically free. Unfortunately, they
become trivial as e 0. However, this scenario has led
us to search for nontrivial theories in an extended param-
eter space. In this Letter we report on some positive re-
sults.

The model being investigated is an N-component real
scalar field theory in d dimensions, with arbitrary power-
law self-coupling. We are interested in how the couplings
transform under a change of energy scale, and the
inclusion of all powers is necessary for closure under
the RG. The theory remains renormalizable in the usual
perturbative sense when we recognize that the coupling
constants must depend on the cutoff in specific manners.
These dependences are such that the S matrix of the
theory for d = 4 is that of an effective P4 theory, whose
effective coupling depends on all the coupling constants
of the underlying theory. To study the renormalization
of the effective coupling, we must examine the RG
fIow in the infinite-dimensional parameter space of the
extended theory. This is done using Wilson's method of
momentum-shell integration, and the main results may be
summarized as follows.

(a) In the extended parameter space, some RG trajecto-
ries fIow into the Gaussian fixed point, while others How
out of it. The Gaussian fixed point is UV stable with
respect to the latter type of trajectories, along which the
theory is nontrivial and asymptotically free. Spontaneous
symmetry breaking occurs along some trajectories of
this type.

(b) There exists a one-parameter continuum of non-
trivial fixed points. For the Higgs field (N = 4, d = 4)
the density of fixed points is maximum at a location cor-
responding to a potential with broken symmetry. The
Higgs boson mass calculated from this potential is ap-
proximately 2700 GeV.

The model. —The Euclidean action of our model is

sl 41 = d'x
2

(~4 )' + v(4'),1

v(@ ) = gg, .(@ )",
n=1

pK+ d —Kd/2 (2)
where uK is a dimensionless parameter. We define u2 =
r/2, and write for the bare-mass square

mp = 2g2 = rA2 = = 2

In the conventional renormalization scheme, a dimen-
sionless coupling constant is considered renormalizable;
but any higher coupling is rejected on the basis that it leads
to divergencies that cannot be canceled by a finite num-
ber of counter terms. In d dimensions, according to this
rule, only PM and lower-order theories are renormalizable,
where M = 2d/(d —2). With the cutoff dependence (2)
taken into account, however, the higher couplings do not

(3)

where P;(x) (i = 1, . . . , N) are real fields, and P2 = @,@;.
There is a momentum cutoff (or equivalent inverse lattice
spacing) A, which is assumed to be the only intrinsic
scale in the theory. Since the coupling constant gK has
dimension (momentum) +" I, it must depend on the
cutoff according to
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generate new divergencies, and are renormalizable. The
reason is that they vanish in the limit A ~, thus sup-
plying extra convergent factors to Feynman graphs [5].
A more detailed analysis, supplementing the usual power
counting [6] with the cutoff dependences from (2), shows
that„ for d ~ 4, a higher vertex can contribute to a skele-
tal graph only if the graph has M or fewer external lines.
For a nonskeletal graph with more than M external legs,
higher vertices can contribute only via vertex insertions.
This means that the S matrix of the theory is that of an
effective @M theory, whose effective coupling depends on
all the dimensionless couplings u~. Thus, renormalization
must be discussed in the context of the underlying theory.
In particular, the fixed points of the effective coupling are
projections of fixed points in the extended parameter space,
and, except for the Gaussian fixed point, cannot be found
from the effective theory.

Renormalization-group equations. —We make use of
Wilson's RG transformation [1], which thins out degrees
of freedom by (a) integrating out Fourier components of
P; with momenta lying in a shell between A and A/b,
(b) rescaling the cutoff back to A, and (c) rescaling P(x)
to restore normalization in (1). We put

t = lnb, (4)
so that t = 0 corresponds to the energy scale at the
cutoff. The transformation is effected by first decom-
posing the field into two terms p = p, + @f, where

(the slow piece) has nonvanishing Fourier compo-
nents only for momenta k with ~k~ ( A/b, while
(the fast piece) has A/b ~ ~k~ ~ A. The action is split
into two terms, the free-field (quadratic) action So[@],
which includes the kinetic and the bare-mass term, and

Si[@],which contains the remaining terms. We can write
+ 0'f] Sol 4' ] + Sol 0'f] + Sll 0 + 4f] and put

the partition function in the form

(D 4.) p( —So[4.])

(Def) exp( Sol 4 f] Sll 0' + 0'f])

(D P, ) exp( —S'[P,]). (5)

We then rescale all momenta by a factor of b to restore
the apparent cutoff to A, rescale P, to restore our
former normalization, and read off the new coupling
constants from the rescaled S'. The RG trajectories in
the parameter space are generated through successive RG
transformations.

In practice, the RG transformation is carried out in per-
turbation theory by expanding the partition function in
powers of Si[@, + @f], where @f is the field to be in-
tegrated over, with P, held fixed. In the Feynman graphs
of this expansion, all internal lines correspond to pf, and
external lines correspond to P, . The renormalized value
of u~ has contributions from connected graphs with K ex-
ternal lines.

(—1)k—i2k
(2n + d —nd)u2„+ —g2 „,k(1 + .')"

/X P(ml ~ mk)u2 ' u2
(ml, ...,mk)

(n = 1, . . . , ~), (6)

where u~ = ux. (t), and

P(mi, . . . , mi) = (mi . mk) ([(2mi —1) . (2mk —1)]

+ (1V —1)). (7)

In (6), r is the bare-mass parameter defined in (3), and
Sd = 2' der df2/I'(d/2) is the surface area of a unit d-
sphere divided by (2')", with S4 ——(8~~) '. In the sum
over imi, . . . , mk), the prime indicates the conditions

m; =2, . . . , n —0+2,
k

gm, =n+k. (8)
i=1

On the right side of (6), the first term comes from rescal-
ing. The second term contains the one-loop contributions,
in which k is the number of vertices on the loop, with re-
spective orders 2m', . . . , 2mk.

The RG equations (6) are implicit in the work of Weg-
ner and Houghton [7], who used slightly different meth-
ods. Using the Wegner-Houghton results, Hasenfratz and
Hasenfratz [8] analyzed effectively the same equations as

We calculate only to first order in t, with an infinitesi-
mally thin momentum shell. This yields Buz/Bt at t = 0,
or p functions at t = 0. For this calculation we only need
to include tree and one-loop graphs, because the momenta
of internal lines have only an i.nfinitesimal range, and any
additional loop integration will vanish in the limit t ~ 0,
because its range goes to zero. In general, the RG trans-
formation generates all powers of the self-coupling, even
if they were not present in the beginning. In addition,
derivative couplings will arise, but are ignored in the cur-
rent analysis.

The continuum limit A ~ is not trivial, because A
is invisible: In the action, A can be absorbed through
a rescaling of the field. To find the value of A, we
have to compute some physical quantity, for example, a
correlation length, which will be given in units of A ' (or
equivalent lattice spacing). We only know that A ~ ~
when the correlation length diverges, and this can be
true only at certain RG fixed points. A continuum limit
therefore corresponds to some fixed point, and different
fixed points define different physical theories.

As mentioned above, the p functions are calculated at
t = 0 (the energy scale of the cutoff) by summing one-
loop graphs. But, since A does not explicitly appear in
the action, these functions are characterized solely by the
values of the ux. Thus, the P functions are functions only
of the u&, and our one-loop RG equations are exact except
for the neglect of derivative coupling terms. They are as
follows:

~ u2,n

Bt
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and is given at t = 0 by

V, (rb, 0) = [M(a, 2, 8' P ) —1],
where M(a, b, z) is a Kummer function [9]

a(a + 1). (a + n —1) z'

p b(b + 1). (b + n —1) n!

I (b)
I (b —a)I'(a) p

dr e"t

(12)

(6), and concluded that there are no nontrivial fixed points.
As we shall see, this is true when the potential is restricted
to be a polynomial; but interesting nontrivial results obtain
for nonpolynomial potentials (exponentially rising ones,
as it turns out).

Gaussian fixed point —A. n obvious fixed point of the
RG equations is the Gaussian fixed point, with all u2„=
0. The directions of stability and instability can be found

by diagonalizing the linearized RG equations. A negative
eigenvalue corresponds to an IR-stable direction, while a
positive one corresponds to an UV-stable direction.

We quote the results for the case d = 4, N = 4, which
corresponds to the Higgs field. For the eigenvalue

A=2(a+1), (9)
the components of the eigenvector are given by

r(0) (8' )" '[(a + 1).. . (a + n —1)]
~2.(0) =

n!(n + 1)!

(n = 1, . . . , ~). (10)
The Gaussian fixed point is IR stable for a ~ —1,
UV stable for a ~ —1, and marginal for a = —1. The
eigenpotential defined by V, (@,t) —= P„,u2„(t) (@ )"
has the property

(BV,/Bt), =p = AV, ,

(14)

where the linear approximation holds, the eigenpotentials
corresponding to these conditions have one and only one
minimum. An approximate calculation of properties near
the minimum gives the following estimate for the squared
ratio of Higgs boson mass to vacuum field:

I 8~
(o') 2X(I + X) [—r(r)].

Nontrivial fixed points —T.o find all the fixed points of
our theory, we set Bu2„/Bt = 0 in (6), thereby obtaining
a recursion formula for the u2„at the fixed point,
with one free parameter I.. Therefore, we have a one-
dimensional continuum of fixed points —a fixed line—
with the Gaussian fixed point located at r = 0. Figure 1

shows a plot of u2„as a function of r for n = 2, . . . , 30,
for the case d = 4, N = 4. They are normalized to 1 at
the maxima. With the exception of the case n = 2, all
maxima occur at approximately the same point r „=
—0.65. This indicates that the density of fixed points has a
maximum at r = r „.The potential at this point exhibits
spontaneous symmetry breaking, and yields a ratio of
Higgs boson mass to vacuum field of approximately 10.
Using a vacuum field of 273 GeV gives a Higgs boson
mass of approximately 2700 GeV. The significance of
the accumulation point on the fixed line is yet unclear,
and merits further study.

The novel features we found in d = 4, namely, asymp-
totic freedom from the Gaussian fixed point, and the
existence of nontrivial fixed points, are associated with
potentials that have the asymptotic form exp(cP ), whereas
Hasenfratz and Hasenfratz [7] restricted their potential to
be polynomial by implicit assumption. We verify their
finding that no nontrivial fixed points exist with polynomial
potentials. There is, however, no mathematical or physi-
cal reason why exponential potentials should be excluded.

The series breaks off to become a polynomial for negative
integer values a = —1, —2, . . . . The case a = —1, cor-
responding to the free field, is marginal (has eigenvalue
zero). The cases a = —2, —3, . . . are IR stable. This
shows that all polynomial interactions become irrelevant
in the low-energy limit, and the higher the polynomial de-
gree the greater the irrelevancy. This justifies the neglect
of higher terms than P4 in the conventional Higgs sec-
tor. There also exist other IR-stable cases corresponding
to nonpolynomial interactions with noninteger a ( —1.

All the positive eigenvalues, with a ) —1, correspond
to nonpolynomial interactions. The eigenpotentials in
these cases rise like z' ~e' for large z

—= 87r2@, and
thus have different norms from the polynomial potentials.
They describe nontrivial asymptotically free theories. The
"running" potential V, (P, t) can be found by solving the
nonlinear RG equations with given initial conditions. Ini-
tial potentials with 0 ( A ( 2 and r(0) ( 0 yield theo-
ries with asymptotic freedom and spontaneous symmetry
breaking. Sufficiently closed to the Gaussian fixed point,

FIG. 1. Plot of the coefficients u2„(n = 2, . . . , 30) along the
fixed line parametrized by r, normalized to 1 at the maximum
of each curve. With one notable exception (n = 2) all the
maxima approximately coincide at r = —0.65.
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The much-studied two-dimensional Liouville theory [10],
for example, is based on an exponential potential.

The triviality of the conventional approach furnishes
the incentive for us to explore new directions, and
the preliminary results reported here indicate that such
ventures may not be altogether fruitless. A more thorough
paper will be published separately, where we hope to
discuss unresolved issues such as the effect of higher
derivative couplings.
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