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Measurement of Atomic Motion in a Standing Light Field by Homodyne Detection
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It is shown that the photocurrent measured using homodyne detection of the phase quadrature on
the output field of a cavity gives information about the transverse motion of an atom passing through
the standing light field inside the cavity. Monte Carlo simulation techniques are used which result
in quantum trajectories of the system conditioned on the measured photocurrent, i.e., the photocurrent
defines the backaction of the continuous measurement on the atomic motion.

PACS numbers: 32.80.—t, 03.65.Bz, 42.50.Vk

A number of quantum measurements involving the
interaction of an atom with a cavity light field have been
proposed. The photon statistics of the cavity field may
be probed by measuring the atomic phase shift [1] or
the atomic deflection [2—4]. Alternatively the position
at which an atom passes through the standing wave may
be determined by measuring the phase shift imparted to
the light field [5,6]. This yields position resolution better
than the wavelength of the light. An alternative method to
determine the position of the light has been demonstrated
by utilizing a spatially varying level shift which enables
one to correlate the atomic position with its resonance
frequency [7]. This technique does not, however, give
an entangled atom-field state. In this paper we show that
it is possible to monitor the transverse motion of an atom
in a standing wave light field by a continuous homodyne
measurement of the phase of the light. We consider an
atom passing through a standing wave light field in a
cavity. The interaction of the atom will impart a phase
to the light field, depending on which position in the
standing wave the atom passes through. This phase can be
detected by a homodyne measurement of the output field,
giving a measure of the transverse motion of the atom.
This system was analyzed by Storey et al. [5] for an atom
passing quickly through the standing wave so that the
transverse motion of the atom whi1e in the standing wave
can be ignored. A single measurement of the quadrature
phase of the output light was sufficient to determine the
position of the atom.

We wish to consider the situation where the transverse
motion of the atom in the standing wave field cannot be
neglected. In this case we can monitor the transverse mo-
tion of the atom by making continuous measurements on
the quadrature phase of the output light. The continuous
measurement is modeled using Monte Carlo simulation
techniques described by Wiseman and Milburn [8] and by
Carmichael [9].

We consider a two level atom described by the pseu-
dospin o-+, a. , and o-, interacting with a quantized cav-
ity field mode a with dipole constant g and detuning

The cavity decay rate is y„, and the
spontaneous emission rate of the atoms is y~. The cav-

ity is driven with a coherent driving field with amplitude
P. A homodyne measurement is performed on the phase
quadrature X t2 = i(a —at) of the output field from the
cavity.

Using the method of quantum trajectories the evolution
of this system is described by the unnormalized stochastic
Schrodinger equation:

T

d~i/t~) = i
——H &t

—iQy, (Qy, (X t&) + g)a dt
h

dk„4 (1 —k„)e'""'o- dNt, ~ i',.), (1)

where

p 2

H ff = + hho, + ihg cos(kx + P) (at o. —ao.+)
2m

—ih
" ata + ihQy„, P(at —a) —ih cryo.

(2)

is a non-Hermitian effective Hamiltonian. g represents
Gaussian white noise, and the term gy„, (gy„„(X t2) +
g) is proportional to the measured photocurrent and
is conditioning the system on the measurement. The
noise increment dNk (t) = dNk (t) represents sponta-
neous emission into the vacuum modes of the bath. In
order to compensate losses and maintain a stable intracav-
ity intensity the cavity is driven by a coherent driving field
with amplitude P:

y, g'l
P = p4y-. +

4~ ~ ~)a, (3)

where o. is the amplitude of the original coherent state
in the cavity. The first term in (3) compensates for cav-
ity losses and the second term for spontaneous emission.
This can be derived by adiabatically eliminating the inter-
nal atomic degree of freedom in the large detuning limit
yz/5 (( 1, (g/5) (a ) (( 1. The net spontaneous emission
loss is the emission rate y~ times the population of the up-
per level, (g2/62)a cos2(kx + P), with cos2(kx + P) av-

eraged to 2. We do not adjust the driving intensity to
compensate for the phase shift due the atom, since this is
precisely the effect we wish to measure.
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is chosen to be the 6S~/2, F = 4:6P3/2, F = 5 transi-
tion which has a wavelength A = 852 nm. We choose
the atom field coupling constant g = 7.16 MHz and the
cavity lifetime ~„, = 0.18 p, s which are the experimen-
tal parameters of Kimble et al. [10]. Such a high atom
field coupling and cavity lifetime is necessary for effec-
tive monitoring of the atomic motion. We choose for
the detuning 5 = 26y&, where y& for this transition is
y„= 32.3 x 106 rad/s. The choice of the detuning 6 is
a compromise between a reasonably large effective atom-
field interaction strength g /5, which gives the resolu-
tion of the atomic position stored in the cavity field, and
suppressing the spontaneous emission, which disturbs the
homodyne detection of the phase quadrature. The ampli-
tude of the intial coherent cavity field state is choosen to
ben =3.

Figure 1 shows the center of mass motion of an atom in
the cavity light field. The abscissa gives the time in decay
times of the cavity. The total time of the simulation is
320/y„, . The ordinate gives the expectation value (x) of
the position operator in units of wavelength of the cavity
field. The atom initially starts halfway between a node
and antinode of the standing light field, where "0" in the
figure indicates the location of an antinode. Furthermore,
we assume that the atom is initially in the ground state.
The initial state is a Gaussian wave function with standard
deviation o. = A/20, i.e., the atom starts well localized
in the potential well. In the limit of large detuning one
can think about the motion of the atom as if it were in
the potential —(g /5)atacos2(kx). For this, one has to
assume that the atom is for all times in the ground state.
The figure shows an oscillatory motion of the atom in the
potential well. This oscillation would be washed out by
averaging over many trajectories since each would start
with different values of (x). It should be mentioned here
that there is a nonzero probability for the atom to go into
one or both neighboring potential wells. In this case the
atom is in general not trapped and travels through the

The stochastic Schrodinger equation (1) describes the
time evolution of the quantum trajectory wave function
~P, (t)). The subscript c indicates the fact that we are
dealing with a conditioned wave function. It describes the
state of the open system (atom plus cavity field) at time
t, conditioned on the particular history of measurement
records recorded at the detectors monitoring the system
prior to t. In this particular case two different measure-
ments are involved, which are modeled by two indepen-
dent stochastic processes. There is a quantum diffusion
process which gives the conditioning of the system due to
the homodyne detection of the output field of the cavity.
In homodyne detection the output field is added coher-
ently at a beam splitter to a strong local oscillator field.
This field is detected by a photoelectron detector. The
measurement record is a stochastic photocurrent:

1(r) " Qy-. [Qy-. (X g2)(r) + C(r)]. (4)

0.2

0.15-

0.05

P -0.05

-0.1

-0.15

-0.2—

-0.25-

I

50
I I I

100 150 200 250 300
-0.3

350

FIG. 1. The center of mass motion of the atom (x) (in units
of the optical wavelength) is plotted versus the time in cavity
lifetimes.

The conditioning of the wave function on the measured
photocurrent is given by a diffusion term of the form
[8] igy„—, (gy„, (X gz) + g)a. The second stochastic
process describes the detection of a spontaneously emitted
photon, and is given by a quantum jump process where
the occurrence of a jump corresponds to the count
of an emitted photon by the detector. This process
is described by the stochastic term gy~ e' " rr dN&, .
There are periods of evolution of the system unaffected
by this stochastic term interrupted at random times
by the wave-function collapse ~P, ) .- gyz e'""'o. ~P, ).
The random collapse times are determined in a Monte
Carlo fashion from the rate & = y~(p, (r)Ia+a Ital (r)). -
where ~p, ) denotes the normalized wave function. The
translation operator in momentum space e'~" defines the
recoil of the emitted photon, where the momentum Fik„

is given by the projection of the wave vector k of
the emitted photon onto the transverse direction. The
probability for spontaneous emission into a solid angle
dA is P = (3/Svr) sin~ 0 dA, where 0 denotes the angle
between the polarization direction of the linearly polarized
incident field and the wave vector k.

The connection between a single quantum trajectory
~ P, (t)) and the solution of the corresponding master
equation p(t) is given by p(t) = (~P, (r))(fi, (t)~), where
(. . ) denotes the ensemble average over realizations of
the two stochastic processes. Our objective is to show
the relation between the measured photocurrent and the
transverse motion of an atom in the cavity field. This
implies that we are more interested in the properties
of a single quantum trajectory than in the solution of
the master equation because p(t) does not describe a
particular quantum measurement scheme, that is, different
measurements (for example, the measurement of the
amplitude quadrature instead the phase quadrature) result
in the same master equation.

In our quantum trajectory treatment we have simulated
the motion of a cesium atom. The active atomic transition
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FIG. 5. The mean photon number (N) (solid line) and its
variance Var(N) (dashed line) versus the time in cavity
lifetimes.
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FIG. 6. The inversion (cr ) versus the time in cavity lifetimes.

information about the atomic motion. The phase shift is
not shown in Fig. 4. To get a reasonably good signal-to-
noise ratio the atomic motion should be slow on the time
scale given by the cavity life time ~„, and the amplitude
of the oscillations of the phase quadrature (X i2) should
be reasonably large.

In Fig. 5 the mean photon number (N)(t) (solid line) of
the cavity field is shown, and the variance of N, Var(N)(t)
(dashed line). The time dependence of (N) is closely
related to that of (X p), i.e. , the oscillation of (N) is
phase shifted by vr/2 with respect to the oscillation of
the phase quadrature (X y2). If the phase of the field
becomes maximal through the interaction with the atom,
the field will be maximally off resonant with the constant
driving field, and this causes the greatest decrease in the
field intensity. A decrease of the field phase causes by
the same effect an increase in the field intensity. The
variance Var(N) is usually a little bit greater than (N), but
is sometimes a little smaller than (N) due to spontaneous
emission, so the cavity field state is always close to a
coherent state.

Figure 6 shows the inversion, (a.,), of the two atomic
levels. It turns out that due to the large detuning 5, the

mean of o-, differs by approximately 2% from the ground
state. The spikes in Fig. 6 are the atom jumping into
the ground state when a photon is spontaneously emitted,
followed by damped Rabi oscillations that bring the atom
approximately back to the value of (o.,) before the jump.
The Rabi oscillations occur on a time scale which is much
shorter than the cavity lifetime. In Fig. 6 a further low
frequency oscillation can also be seen. This oscillation
is caused by (o.,) following, dynamically, the motion of
the atom, i.e., (cr, ) is greatest if the atom is located in the
minimum of the potential. Therefore the time dependent
behavior of (o.,) is correlated to that of (X t2).

To summarize, we have shown that the oscillatory
transverse motion of an atom in a standing light field
inside a cavity yields an oscillation in the measured
photocurrent. The photocurrent is maximal if the atom
is close to an antinode of the cavity field, and minimal
if the atom is closest to a node of the field. We have
demonstrated that the atom can be tracked through a
watchdog effect via the coupling to the measurement
device, where the continous measurement of the phase
quadrature on the output field of the cavity gives the
backaction on the atom.
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