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We discuss periodic Schrodinger operators for a particle on a rectangular lattice of sides €¢;, €. In
addition to the standard (8-type) coupling with continuous wave functions at lattice nodes, we introduce
two other boundary conditions which generalize naturally the one-dimensional &’ interaction and its
symmetrized version; both of them can be used as models for geometric scatterers. We show that the
band spectrum of these models depends on number-theoretic properties of the parameters. In particular,
the & lattice has no gaps above the threshold if €¢,/€¢, is badly approximable by rationals and the

coupling constant is small enough.
PACS numbers: 03.20.+i

In this Letter we discuss Schrodinger equations for a
particle whose motion is confined to a rectangular lattice
of sides €; and ¢, in the plane. We want to make three
points. First, we are going to show that, in addition to the
standard boundary conditions to couple wave functions
at the lattice vertices, there are two other classes which
generalize naturally the one-dimensional &' interaction
and its symmetrized version. Second, we demonstrate
that these interactions inherit the properties of &’ and
represent useful models for the situation when the lattice
links are connected via small and complicated geometric
scatterers. Finally, we show that the spectra of these
lattice Hamiltonians exhibit a dependence on number-
theoretic properties of model parameters.

A fresh interest to particle motion on lattices [1] has
been motivated by problems of quantum-wire structures.
In a broader context of quantum motion on graphs, how-
ever, this problem existed four decades ago in connection
with the free-electron model of organic molecules [2] and
resurfaced recently in different contexts [3—5].

When a quantum Hamiltonian for a graph is con-
structed, it is essential to ensure that it is self-adjoint, i.e.,
that the probability current is conserved at the graph ver-
tices. Usually it is achieved by assuming that the wave
functions are continuous there and satisfy the condition

D Whxm) = anth (), (1
J
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where m is the vertex number, the sum runs over all links
entering this vertex, ¢(x,) is the common value of the
functions ¢; there, and «,, is a real parameter. As long
as a single junction is concerned, we drop for brevity the
index m and the arguments and write the condition as

b= =Ya=1y, D Y= ay, )
j=1

where »n is the number of the connected links. We shall
speak about a & coupling, because for n = 2 this is
nothing but the one-dimensional 8 interaction [6].

There are two basic questions about the condition (2).
The first is how well a graph can model a more realistic
system of branched tubes. It was argued a long time ago
[2] that for star-shaped junctions the requirement (2) with
a = 0 might be the optimal choice, though up to now no
strict result exists. At the same time, if the connecting
region has a different geometry, supports a potential,
or an external field is applied, one expects that other
boundary conditions may be more appropriate. However,
this problem is difficult, and we are not going to attack
it here.

The second question concerns intrinsic properties of
graph Hamiltonians: One may ask what are the admissible
couplings and which role is played among them by the
condition (2). This problem was solved in [4] by means
of the von Neumann theory of self-adjoint extensions.
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The operator family obtained in this way is large—a local
coupling at an n-link junction can be described by n? real
parameters—so additional restrictions are sought. If the
wave functions are demanded to be continuous, we arrive
back at the condition (2).

The next, more general, class is couplings which are
locally invariant with respect to permutations of the links.
They are described by the conditions

gi=ayl + by Y, j=1,...,n,
k#j
where a,b are two real parameters. In addition, one
has two singular one-parameter couplings which corre-
spond to the limits a,b — o with B8 :=a — b or B, :=
nla + (n — 1)b] preserved. The corresponding boundary
conditions can be given in the explicit form

Zw} =0, ¥ —d=BW — ). j.k=1,...n,
j=1 3)

and n
Yi=-=dp =y D =80, @

j=1
respectively. We call the first of them &', because it

reduces to the &' interaction for n = 2 [6]. The second
one corresponds rather to a symmetrized version of &'
interaction on line, ¢, + ¢/ = 0and ¢+ + - = B,y/;
hence we shall speak about the 8! coupling.

Even in the case n = 2 it is not easy to grasp the
meaning of the &' interaction. It cannor be obtained
as a limit of scaled scalar potentials; one has to use
instead nonlocal or velocity dependent interactions [7].
The results are not very illustrative. On the other hand,
we have shown in [5] that 8’ shares many properties with
complicated geometric scatterers. Now we are going to
argue that junctions connecting any number of links have
the same property.

To this end, we replace a point junction by the graph
sketched in Fig. 1: The loose ends of any pair of graph
links are connected by N wires of the same length €.
We suppose that the wave functions at each vertex of this
graph are coupled by the boundary conditions (2) with n
replaced by 2N + 1 and the same a.

The S matrix for such a graph is an n X n symmetric
matrix with the reflection and transmission amplitudes on
and off diagonal, respectively. To find it, one has to write
the wave functions as combinations of plane waves at
each of the n + N(}) graph links, and to demand it satisfy
the conditions (2) at each node. Because of the graph
symmetry, we arrive at a system of five linear equations.
It is straightforward to write them down and to solve
them, but it is somewhat lengthy; hence we shall give
details elsewhere [8]. The resulting amplitudes are

P> = (n — 2)PQ + (n — 1)Q?
P2 —(n —2)PQ + (n — 1)Q2 ’

20
P2 — (n — 2)PQ + (n — 1)Q?’

rk) =

tk) =
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where
o IN
=1—-—=+1i - = .
P 1 " iN(n 1)cotk€, Q Sink?

One can check directly that the § matrix is unitary,
lr(O + (n = DIe(k)* = 1.

If we consider increasingly complicated scatterers in
which the connecting wires become shorter, i.e., we put
¢ := 7/N, the S matrix elements can be expressed as

n—2—nalik — (5)ikt
—n + na/ik + (3)ikt
-2
—n + na/ik + (4)ikr

r(k) = +OWN),

(5)

t(k) = +OWN™");
the error terms depend on k, but one can make them
small in any finite interval of energy by choosing N large
enough. It is also clear that the high-energy behavior of
the limiting scatterer is independent of «, and we put the
latter, therefore, equal to zero.

This result can be compared with the S matrix elements
corresponding to our two singular couplings, (3) and (4),
which were computed in [4]: they equal

2 — n + inkB 2
k = k _—
r (k) n + inkp 1) = ink 3
and
n—2— ikB, -2
k P k B ——
(k) n— ikB, 1) = = ikB;

respectively. We can reproduce the corresponding trans-
mission and reflection probabilities from (5) with a =
0 and N large by choosing 7 :=28/(n — 1) and 7 :=
2Bs/n(n — 1) in the two cases. The S matrix elements
differ just by a phase factor: They are multiplied by —1 for
the 8. coupling, while in the &' case we get the same (k),
and r(k) up to the phase factor 2 arg(n — 2 + ink3) which
goes to 7 as k — . The difference is important, because

FIG. 1. A geometric-scatterer junction with n = 3 and N = 2.
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the interactions (3) and (4) represent an effective von Neu-
mann decoupling at high energies, lim;_... r(k) = 1, while
the geometric scatterer mimics rather the Dirichlet decou-
pling, limy—. r(k) = —1.

Let us turn now to our main topic. Consider a
rectangular lattice with the node spacings €;, ¢, in the x
and y directions [9], respectively, and suppose that the
particle is free at lattice links and the wave functions
at each graph lattice vertex are related by the same
boundary conditions of one of the above described types
with n = 4. It is a straightforward if tedious exercise
to write the Bloch ansatz for the wave functions and to
derive the relation between the energy E = k2 and the
quasimomentum components ;. For a & lattice this was
done in Ref. [1] with the result
costh €y — coskt, o

- = =o.
sink ¢, %

In a similar way, one finds that the spectrum of a 8/ lattice
is determined by the condition

costh €, + coskt, costh€, + coskl, Bsk

sink €, sink €, T2

COS‘l?l 61 - COSk€1
sink €,

while for a &' lattice we have
i cosd;€; — Re[(1 + ikB)e*t] 0
Im[(1 — ikB)2ei*4] N

j=1
The last relation looks more complicated. For large k,
however, it simplifies, up to O (k') terms, to the form
(7) with B; = 4; this means that the spectra of the two
lattices have the same high-energy asymptotics.

For simplicity, we shall discuss only the conditions.(6)
and (7). Though they cannot be solved explicitly with
the exception of trivial cases, they provide, nevertheless,
useful information about the spectrum. To illustrate that,
let us rewrite the first of them in the form

a i v; — cosk{;
2k I sink€;

where the parameters v; := cosd;€; run through the
interval [-1,1]. It is easy to see that, for a fixed k, the
maximum of the right side equals

2
k€; a [ k€
o= Y o 52 - [ E2]),
+ () ; an( 2 2L 7
where the square bracket denotes the integer part, and the
minimum F_(k) is obtained by replacing tan with —cot.
Hence the gaps of the & lattice spectrum on the positive
real half line are determined by the condition

*a/2k > *F.(k) (8)

for =a > 0, respectively; for the negative part of the
spectrum one has to compare «/2k with the extremum
values iF«(ik).

The condition (8) has several simple implications, in
particular, as follows: (a) The spectrum has a band
structure; it equals [0,%) if and only if @ = 0. (b) If
a > 0, the upper end of each band is a square of some
k, := wn/€; or k, := wm/€,, where n,m are integers.
Similarly, for @ < 0 each lower band end, with the
exception of the first one, equals k2 or k2. (c) The
lowest band threshold is positive (negative) for *a >
0, respectively; if a < —4((5{1 + €{l), the whole first
band is negative, and the second one starts at (7/L)?,
where L := max(€,€;). (d) The positive bands shrink
with increasing |a|. (e) All gaps above the threshold
are finite. If there is an infinite number of them, their
widths are asymptotically bounded by 2|a|(€; + €;)7! +
O (r~"), where r is the gap number.

The most interesting property of the spectrum is its
irregular dependence on 6 := €,/¢; coming from the
existence of competing periods in F+(k). Recall that
an irrational number 6 is badly approximable by ra-
tionals if there is a § > 0 such that |[g8 — p| > 8q7!
holds for all integers [10]. This set is uncountable but
of zero measure. Its complement consists of all irra-
tionals whose continued-fraction representation has an un-
bounded sequence of coefficients. Alternatively, one can
say that there are sequences {g,}, {p,}, of integers such
that g,|q,0 — p.| — 0; we call these numbers last admis-
sible [11].

The & lattice spectrum contains, obviously, infinitely
many gaps if @ is rational. For an irrational @ we have
the following results:

Theorem.—If 6 is badly approximable, there is ay > 0
such that no gaps exist above the threshold for |a| < a.
On the other hand, the number of gaps is infinite for any
0 provided |a|L > 571272 If 0 is last admissible, there
are infinitely many gaps for any a # 0.

The proof is technical and will be, therefore, given
elsewhere [8]. However, its idea is simple. For irrational
6 the right side of (8) has no zeros, so one has to
investigate the sequence of its local minima (for « > O,
and maxima otherwise). They occur at the points k,, &,
with integer n, m; the properties of 6 determine how fast
this sequence approaches zero. This has to be compared
with the sequences {« /2k,} and {a /2k,,}.

Remark.— The sufficient condition for the existence of
infinitely many gaps is saturated for the golden mean,
0 = %(1 + +/35), for which also the critical value |ao|€ is
w2(50)"'/2 = 3.4699 . ..; this certainly is not small.

The condition (7) can be solved in a similar way; the
spectral bands are now determined by the inequalities

FFz(k) = £B;k/2 &)

for =8, > 0 and k > 0, and an analogous relation for
the negative part. From here we can make the following
conclusions: (a) The spectrum equals [0, %) if and only if
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Bs = 0; otherwise, the number of gaps is infinite. (b)
If B; > 0, the lower end of each band coincides with
some k2 or k2, where n, m are integers. The same
is true for B; < 0 and the upper band end, with the
exception of the first one. (c) The lowest band threshold
is positive (negative) for =8, > 0, respectively; if —€; —
€, < Bs <0, the whole first band is negative, and the
second one starts at zero. (d) The positive bands shrink
with increasing |8;].

An analog to the property (e) of § lattices is slightly
more complicated. If a band high in the spectrum is well
separated, its width A, is the same as in the §’ Kronig-
Penney model, A, = 8/8,¢; + O(r~!). If @ is rational
and k, = k,, for some n,m, we have a similar expression
with 61-_1 replaced by € 7' + €' It may happen, however,
that k,, and k,, are not identical but close to each other, so
that they still produce a single band. Then the band width
is enhanced; the effect is most profound just before the
band splits. Using the condition (7), it is straightforward
to estimate that the factor of enhancement by conspiracy
of bands is, up to error terms, bounded by

< 20+ 1+ 1 +46 207 + 1+ V1 + 467!
2(6 + 1) ’ 2(6-1 + 1) ‘

Taking the maximum over #, we find that the &/ lattice
bandwidths are asymptotically bounded by

8 . 32
+ <A, <
B.L O ') <A, 3B,

€' +6hH+o@rh.

The irregular dependence on @ is a new feature coming
from the higher dimensionality. On the other hand, the
spectra we have discussed above have roughly the same
behavior as their Kronig-Penney analogs: At high energies
the bands dominate in the § lattice spectrum, while the
converse is true for 6’ and §/.

If one of the two last lattices is placed into an electric
field, the tilted-band picture allows us to conjecture that
the conclusions of Refs. [5,12] might extend to higher
dimensions. The spectrum now would remain continuous,
of course, but an unrestricted propagation would be
possible only in the direction perpendicular to the field
gradient. For a & lattice, where a phase transition is
expected to occur in the one-dimensional situation, and
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the gaps may close for some irrational €, the problem is
even more exciting.
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