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Hysteresis, Discrete Memory, and Nonlinear Wave Propagation in Rock: A New Paradigm
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The structural elements in a rock are characterized by their density in Preisach-Mayergoyz space
(PM space). This density is found for a Berea sandstone from stress-strain data and used to study
the response of the sandstone to elaborate pressure protocols. Hysteresis with discrete memory,
in agreement with experiment, is found. The relationship between strain, quasistatic modulus, and
dynamic modulus is established. Nonlinear wave propagation, the production of copious harmonics,
and nonlinear attenuation are demonstrated. PM space is shown to be the central construct in a new
paradigm for the description of the elastic behavior of consolidated materials.

PACS numbers: 91.60.Ba, 83.80.Nb, 91.60.Fe, 91.60.Lj

Rocks at low pressure, P ~ 1000 atm, have remarkable
elastic properties. Their stress-strain equation of state is
hysteretic, possessing discrete memory [1]. Their third
order elastic constants, measures of their nonlinearity, are
typically 3 to 4 orders of magnitude greater than those of
materials such as Al and Si02 [2]. Amplitude dependent
attenuation is commonly encountered [3]. Rocks are an
example of a consolidated material. Such materials are not
properly described by the traditional theory of nonlinear
elasticity [4,5]. The purpose of this paper is to illustrate
some quantitative features of a new paradigm treating the
elasticity of consolidated materials, and to describe results
for elastic wave propagation from use of this paradigm.

The unusual elastic behavior of rock is due primarily
to the mesoscopic structural features in rock, e.g. , grain
contacts, cracks, voids, etc. We want to discuss a theo-
retical framework for the description of the macroscopic
nonlinear elastic response of a material containing many
mesoscopic structural features. The centerpiece of the
framework is Preisach-Mayergoyz space (PM space) [6,7],
a density space for the mesoscopic structural features and
their elastic properties. McCall and Guyer [8] showed how
to use a known PM space density to understand and de-
scribe hysteresis, discrete memory, and many other elastic
properties of rock. They argued that a suitable experiment
would provide the means to determine the content of PM
space. Here we illustrate the journey from a suitable ex-
periment to the contents of PM space and to predictive
power for the elastic properties of the rock. The elements
of this theoretical framework are markedly different from
those of the traditional analytic theories of nonlinear elas-
ticity [4,5] and constitute a new paradigm for the elasticity
of consolidated materials.

The fundamental premise underlying our description of
a rock is that macroscopic elastic behavior is due primarily
to a large number of mesoscopic structural features. We
call these features hysteretic mesoscopic units (HMU). To
see the consequences of this premise we characterize the

individual HMU and evaluate the inhuence of an ensemble
of HMU on macroscopic behavior. We describe the
HMU with a small number of parameters. For example,
the individual HMU may be modeled by mechanical
features whose equilibrium lengths switch hysteretically
between two configurations, open and closed, at pressures
P, and P„respectively (Fig. 1). (We use the language
of cracks for convenience while not being committed to
a particular model of the HMU. ) In the closed (open)
configuration the unit has equilibrium length 8, (8,). The
pressures (P„P,) are pressures across the unit, a simple
approximation to the local stress field across a structural
feature. The structural features that we model in this
fashion have complex local stress fields and complex
responses to pressure. Since, however, we are describing a
system with many such units, we believe that these details
are extraneous compared to the essential features captured
by a set such as (Z„Z„P„P,).

To follow the behavior of a large number of HMU
we use the Preisach-Mayergoyz picture and describe the
elastic state of the system as a trajectory in PM space [9].
This paradigm has been used successfully to describe a
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FIG. l. Rudimentary elastic unit. The elastic properties of the
macroscopic system are due to an ensemble of hysteretic meso-
scopic units (HMU). A unit is modeled as having an equilib-
rium length which goes between two states hysteretically.
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wide variety of hysteretic systems. In our context PM
space is the space in which we locate the pressure pairs
(P„P,) corresponding to the set of HMU in the rock.
The elastic state of the system is the consequence of being
brought to pressure P by a prescribed pressure protocol.
This protocol leads to an elastic state trajectory E crossing
PM space [9,10]. The stress-strain and modulus-stress
relationships are calculated from E and the density
p(P„P,) of HMU in PM space. Thus these equations
of state are functionals of the elastic state [8].

For illustrative purposes we assume that all of the HMU
share the same two values of 4 and are configured as a
cubic lattice [8]. At uniaxial pressure P and elastic state
E, the length of the system L is given by

L(E) = Z, Nr + (8, —Z, )N(E),

where N(E) is the number of closed HMU in elastic state
E and 4 NT is the length of the system at zero pressure.
The strain, defined with respect to the initial state of the
system, N(E) = 0, is given by

~(E) =
I.L(E) —L(o)]/L(o) = — n(E), (2)

where n = (8, —8,)/Z„Z, ) Z„and n(E) = N(E)/Nr.
A stress-strain equation of state having hysteresis loops
with discrete memory follows immediately from this
equation [8,9]. The elastic modulus M(E) is given by

M(E) ' = —Be/BP = n Bn(E)/BP. (3)

Thus we see that M(E) ' has a close connection to n(E)
and to the density p(P„P,). Modulus-stress data yield
Bn(E)/BP, simple integrals over the PM space density.
We can use M(E) ' data to learn the PM space density.

In Fig. 2 we show the inverse of the quasistatic elas-
tic modulus as a function of stress for a room-dry Berea
sandstone. This inverse modulus was found by differenti-
ating stress-strain data generated in uniaxial compressional
tests using the pressure protocol shown in the inset [11].
If we coarse grain PM space on pressure scale AP into
K(K + 1)/2 cells and define p(i,j) = p(P;, P, )(AP) as
the contents of cell (i, j), i, j = 1, . . . , K, then when the
pressure is increased in steps of size AP the elastic modu-

lus is given by

M(p )
' = n g p(i, j), (4a)

j=1

and when the pressure is decreased in steps of size AP the
modulus is given by

M(P~) ' = n g p(i, j). (4b)
I=J

To find p(i, j) using Eqs. (4), we coarse grained the
largest loop in Fig. 2 using AP = 0.2 MPa, such that E =
65. Thus we had 130 constraints to fix K(IC + 1)/2 =
4290 values of p(i,j). To invert for p(i, j) we used
a simulated annealing scheme with quadratic smoothing
[12]. The results of this analysis are shown in Fig. 3 on a

gray scale in which the darkest squares correspond to the
highest density p(i, j). Several observations are in order.

(1) Approximately 50% of the HMU are off the diago-
nal, i.e., hysteretic. The HMU on the diagonal (nonhys-
teretic) constitute an increasing percentage of a decreasing
number of active units as the ambient stress is increased.
The off-diagonal HMU follow a similar pattern, producing
the strain hardening exhibited in the data as well as the de-
crease in degree of hysteresis with increasing stress.

(2) The density p(i, j) is largest in the low pressure cor-
ner. Thus as the pressure is increased the strain changes
most rapidly with pressure at low pressure. The HMU
along the P, axis are responsible for a low pressure defor-
mation that does not relax until the sample is unloaded.
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FIG. 2. Modulus vs stress I. The inverse of the Young's
modulus is plotted as a function of stress for uniaxial com-
pression of a Berea sandstone using the load history shown in
the inset. The apparatus and details of how the modulus is
found from stress-strain data are described in Ref. [11].
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FIG. 3. PM space. The PM space appropriate to the modulus-
stress equation of state data in Fig. 2 is shown as a gray scale
plot. About 50% of the density is on the diagonal.
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(3) We have calculated the quasistatic modulus-pressure
equation of state using Eq. (1), Eq. (3), and p(i, j) from
Fig. 3 for the complete pressure protocol in Fig. 2. We
find the modulus vs pressure shown by the solid curve
in Fig. 4. Comparison of Figs. 2 and 4 confirms the
reasonableness of p(i, j) in Fig. 3.

(4) At low frequency, a sinusoidal wave of pressure
amplitude BP carries the material at (x, t) through the
same series of elastic states as a sinusoidal quasistatic
pressure protocol. Figure 2 shows the evolution of the
elastic modulus with 6P as the strain is reduced from
10 3 to 10 4. As the strain amplitude is made smaller
and smaller, the amplitude of the hysteresis loop becomes
correspondingly smaller while the qualitative properties of
the loop remain unchanged. We estimate the dynamic
modulus by neglecting frequency effects and using the
smallest quasistatic pressure cycle that we can resolve [13—
15], AP = 0.2 MPa. We find the result shown as open
circles in Fig. 4. The dynamic modulus is larger than
the quasistatic modulus except at the turning points where
they coincide. The dynamic modulus is related to the
behavior of p(i, j) near the diagonal in PM space, whereas
the quasistatic modulus is related to p(i, j) throughout
PM space [Eqs. (4)]. Thus the difference between the
quasistatic and dynamic moduli is intimately related to the
presence of hysteresis.

To develop a theoretical description of wave propaga-
tion we exploit observation (4). Take the rock to be in
elastic state Fp. When there is a pressure disturbance 6P
in the rock we take the elastic modulus at (x, t) to be

M(x, t; Ep) = Mo(1 + K[BP( tx)]), (5)

where Mp is the elastic modulus at the ambient elastic
state Ep of the rock and ~, a functional of the pressure
disturbance at (x, t), is found from Eqs. (1)—(3) and p(i, j)
in Fig. 3. The time or space average of ~ is zero. To
describe one-dimensional wave propagation we take the
equation of motion for the displacement field to be

8 1 BQ
, = ——M, (1 + K[ap]) —. (6)
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FIG. 4. Modulus vs stress II. The inverse Young's modulus,
calculated using the PM space density in Fig. 3, is plotted as
a function of pressure. The load history used to construct
this plot is shown in the inset of Fig. 2. The solid curve is
the quasistatic modulus. The open circles are the dynamic
modulus. The dashed line is the data from Fig. 2.

Suppose a single frequency disturbance propagates
through the system with displacement amplitude uo(x, t) =
Usin~, where ~ = kpx —capt. The first order modifi-
cation of up due to nonlinear elasticity is given in the
frequency domain by [16]

u)(x, co) = dx
dM

g(x, x', cu)

8 u x ccrc tel

(10)

for one period of the initial disturbance, where

a = Mo(1 + K[BP(x, t)])Bu/Bx . (1 1)

Using the lowest order treatment of the displacement field,
we find [17]

1/Q —1/Qo ~ bz, (12)
where Qo is due to linear attenuation mechanisms. The
out-of-phase (hysteretic) component of the nonlinear elas-
ticity is the source of amplitude dependent attenuation.

In this paper we have argued that the macroscopic elas-
ticity of rock is due primarily to a large number of HMU.

where 6Pp ~ cos~ is the pressure disturbance due to up

and g(x, x', cu) is the Green function for the harmonic
problem. The modulus K [8Po] can be .written as a sum
over Fourier components in and out-of-phase with the
pressure at frequencies n~, where n = 1, 2, 3, . . . , i.e.,

K[BPO] = /[a„cosnr + b, sinnr]. (8)
n=l

The out-of-phase component of K[BPo] is due to hysteresis,
i.e., the off-diagonal density in PM space.

To find the first order nonlinear component of the
displacement u~ we insert the Green function for the
harmonic problem in an infinite homogeneous space into
Eq. (8) and find

kp Ux
u~ ——— cosr g c„cos(nr —P„), (9)

n=l

where c„=Qa2 + b2 and tan@„=b„/a„.Notable fea-
tures of this result are the following: (1) Proportionality
to propagation distance x. (2) Proportionality to U (the
amplitudes a„and b„are proportional to 6Pp, which in
turn is proportional to U). (3) Proportionality to traditional
measures of nonlinearity; for example, the amplitude a& is
the P coefficient of traditional analytic treatments. (4) A
rich harmonic structure with amplitude proportional to U2

at 3', 4', . . . . These terms are a manifestation of the dis-
continuous character of the response of the modulus to
pressure. In the traditional analytic treatment, terms of this
type are proportional to U3 and higher powers of U.

Finally, we find the net work done by the effective
stress o- as the wave propagates by calculating
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We introduced PM space to follow the behavior of a col-
lection of HMU. From a stress-strain data set on a Berea
sandstone we found p(i, j), the density of HMU in PM
space. This density lets us describe the response of the
rock to a complex pressure protocol and to examine the re-
lationship between the quasistatic and the dynamic modu-
lus. It also provides essential input for the description of
wave propagation. We found copious harmonics with am-
plitude proportional to the square of the displacement field
and nonlinear attenuation. Experimental measurements on
rock show the same properties: hysteresis, discrete mem-
ory, copious production of higher harmonics [18],and non-
linear attenuation [3). None of these properties has an
easy explanation, either qualitatively or quantitatively, us-
ing the traditional analytic models of nonlinear elasticity
[4,5]. Finding all of these properties in a single model is
gratifying.

In addition, quantitative use of the PM space density
yields a quantitative description of the bent tuning-fork
behavior seen in resonant bar experiments [19]. We
believe the PM space density and its use as illustrated in
this paper constitute a new paradigm for the treatment of
the elastic properties of consolidated materials.

Several limitations to the demonstration we have made
in this paper point to the direction of future work. The
PM space model must be developed further to describe
interacting systems of hysteretic units as is called for by
hysteresis in the elastic modulus or elastic avalanches. A
data set as simple as a single stress-strain loop cannot
expose the nature of the structural elements at work in the
rock. The simplicity of the PM model lets one contemplate
a series of interactive pressure protocols, in which porosity
and saturation are simultaneously monitored, designed
for the purpose of learning the nature of the structural
elements.
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