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Localization of Superradiance near a Photonic Band Gap
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We describe collective spontaneous emission of N two-level atoms placed within a photonic band-

gap material. When the atomic resonance frequency lies at the band edge, superradiant emission
remains localized in the vicinity of the atoms. This leads to a steady state with spontaneously broken
symmetry in which the atomic system acquires a macroscopic polarization. The superradiant decay
rate is proportional to N / and N for isotropic and anisotropic 3D band gaps, respectively. The
corresponding peak intensity of superradiance is proportional to N / and N, respectively.

PACS numbers: 71.55.Jv, 32.80.—t, 42.50.Fx

Photon localization, in three-dimensional dielectric me-
dia, opens a new frontier for fundamental phenomena in
classical and quantum electrodynamics. Following the
initial prediction [1] of this effect, attention has focused
on systematic methods for the experimental realization of
strong localization of light and its consequences in laser
physics.

While studies in strongly disordered dielectrics have
revealed signatures of incipient localization [2,3], the pro-
posal of creating a complete photonic band gap [4,5] of-
fers the most systematic route to this goal. In recent years,
several dielectric structures have been predicted [6—8]
and observed [8] to exhibit a photonic band gap (PBG),
a range of frequencies for which no propagating electro-
magnetic modes are allowed. The existence of PBG ma-
terials gives rise to a number of interesting phenomena
including the suppression of spontaneous emission [4],
the formation of strongly localized states of light [5], and
photon-atom bound states [9]. Spontaneous emission in
a PBG displays distinct features from those in free space
such as oscillatory behavior, fractional steady-state atomic
population on the excited state, and subnatural linewidth
[10,11]. These are all direct consequences of localization.

Although photonic band gaps are analogous to elec-
tronic band gaps in semiconductors, there are many
intriguing aspects of photons which are not shared by
electronic systems. Among these are laser action and su-
perradiance. These are related to the bosonic nature of
light through which many photons can occupy the same
mode. The recent observation of laser action in strongly
scattering media [12] motivates studies in this new di-
rection. In this paper we derive theoretically the nature
of collective spontaneous emission of N two-level atoms
whose resonance frequency lies at the edge of an isotropic
or anisotropic 3D photonic band gap. It is shown that the
collective decay rate is proportional to N / and N for
isotropic and anisotropic 3D band gaps, respectively. The
corresponding peak intensity is proportional to N / and
N3, respectively. That is, the collection of atoms near a
3D band edge can radiate faster (-N2) and more intensely
(-N ) than Dicke superradiance in free space. We show

that a fraction of the superradiant emission remains lo-
calized in the vicinity of the atoms leading to a steady
state in which the atomic system acquires a macroscopic
polarization and retains a nonzero atomic population in
the excited state. This novel form of spontaneous sym-
metry breaking is the analog of lasing without a cavity
mode. The collective emission near the photonic band
edge is accompanied by self-induced oscillations, a simple
illustration of the "ringing" regime in superradiance. In
addition to being a fundamental phenomenon, localiza-
tion of superradiance may play an important role in low
threshold microlasers based on photonic band gap engi-
neering. It suggests that a light emitting diode operating
near a photonic band edge will exhibit very high modu-
lation speed and coherence properties without recourse to
external mirrors or even a true cavity mode.

We consider a Dicke model [13—16] of N identical
two level atoms coupled to the radiation field in a
three-dimensional periodic dielectric. The atoms have
excited state ~2), ground state ~1), and resonant transition
frequency co». The Hamiltonian of the system in the
interaction picture takes the form

H = g hhgaqaq + tTI ggq(aqJ~2 —J2~aq), (1)

d
(Ji2 (t)) =

dt
G(t —t') (J3(t)J)p(t')) dt', (2a)

where J,, = g„,~i)qk( j~ (i,j = 1, 2) are the collective
atomic operators, aq and aq are the radiation field
annihilation and creation operators, A~ = co~ —co»
is a detuning of the radiation mode frequency
cu & from the atomic resonant frequency cu», and

gq = (to2~d2~/h)(6/2eptogV)'l e& uq is the atomic field
coupling constant. Here d» and uq are the absolute value
and the unit vector of the atomic dipole moment, V is the
sample volume, eq = ek are the two transverse (polar-
ization ) unit vectors, and ep is the Coulomb constant.

Assume that the radiation field is initially in the vacuum
state. The equations of motion for (J)2(t)) and (J3(t)) =
(J22(t)) —(J~ ~ (t)) are
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(Jp(t)& = —2
dt

G(t —t') (J21(t)J|2(t')& dt' + c.c .

(2b)
Here G(t —t') = Px gee ' "(' ') is the delay Green's
function, and (A& indicates the expectation value of
the system operator A. The Green's function G(t —t')
depends strongly on the dispersion relation and density of
states of the medium. For the purpose of discussion we
consider two simple models of a PBG for electromagnetic
waves in a three-dimensional periodic dielectric. In model
I, we assume the dispersion is isotropic with respect
to the wave vector k. The simplest model dispersion
relation which exhibits an isotropic PBG while retaining
the correct behavior in the limit of very low and very high
frequencies is

cpk/c = sgn(k —kp) (k —kp)2 + y~ + kp + y2. (3)

discussion of superradiance at general frequencies using
the full dispersion relation (3) will be presented elsewhere.

To discuss the possibility of spontaneous symmetry
breaking during the process of superradiant emission,
we introduce a very small external perturbation which
endows the atomic system with an infinitesimal polariza-
tion. This is analogous to the addition of a small magnetic
field h in describing the thermodynamic phases of a col-
lection of N magnetic moments. A ferromagnetic phase
transition at zero field is described by taking the limit
h ~ 0 only after the thermodynamic limit N ~. Ac-
cordingly, we find that an infinitesimal initial polarization
of the atomic dipoles gives rise to a macroscopic polariza-
tion in the steady state limit t ~. Assume that initially
the atomic system is in the state [16]

N

G(t —t') =

Here k = ~k~ and kp and y are parameters related to
the dielectric microstructure. The two-valued nature of
the square-root function is made explicit by the presence
of the function sgn(k —kp) = +1 for k & kp and —1 for
k ( ko. The square-root function has branch point singu-
larities at k = ko ~ i y. The presence of the sign function
indicates that the branch cut should be placed along the
line connecting these two branch points. Physically, this
corresponds to placing an isotropic photonic band gap of
width Atp/c = 2y centered about the frequency cup/c =
Qkp + y . Also tpp/c ~ k(kp/Qkp + y ) as k ~ 0 and

teak/c = k + (Qkp + y kp) for k » kp. Near the band

edge cp, /c = Qkp + y2 + y, the photon density of states
is singular. For k = ko, we may simplify the disper-
sion relation by the effective mass approximation cuk ——

tp, + A(k —kp)2, where A = 1/(2y).
The singular density of states is an artifact of the

isotropic model. In the anisotropic model II, which we
describe later, the density of states in fact vanishes at
cu, . While both models exhibit localized superradiance
and spontaneous symmetry breaking, the collective time
scale factors for superradiant emission are qualitatively
different for the two cases.

The delay Green's function G(t —t') can be written for
the isotropic PBG of model I as

d k ~(~k ~21) (~ ~ ) dk (4)
6'7T Epl 0 Mg

Here we converted the mode sum over the transverse
plane wave into an integral and performed the angular
integral. A = mc/It is the cutoff in the photon wave
vector. Photons of energy higher than the electron rest
mass mc2 probe the relativistic structure of the electron
wave packet [17]. Using the effective mass isotropic dis-
persion relation, integration of Eq. (4) yields G(t —t') =
p e ' /$7r(t —t'), where p ~ = cpzl dz&/67TepRc
For simplicity we assume cu2~ = co„i.e., the atomic res-
onance frequency lies at the band edge frequency ~, . A

where r «1, i.e., atoms are mostly populated in the
excited state ~2& and the atomic coherence is infinitesimal.
Such a state can be created by interaction of atoms
with an external pulse [16]. Qualitatively similar results
to the ones we present occur for various values of
the initial atomic inversion per atom (J3(0))/N and for
an infinitesimal initial polarization ( J~q( 0) &/N. The role
of different initial conditions and quantum fluctuations
on superradiance in a PBG will be discussed in detail
elsewhere. The system can be considered semiclassical
[15,16] and equations of motion for x(t) =—( J& (2t) &/Nand

y(t) = ( &J(t) /&N may be obtained from (2) by factorizing
the quantum expectation value of the operator products

d t
= Ny(t) G(t —t')x(t') dt', (6a)

G(t —t')x(t') dt' + c.c.2Nx*(t)—
dt

(6b)

It is easy to verify, using the isotropic, effective mass
solution to the Green's function (4), that x and y are
functions of the dimensionless, scaled, time variable
pN2 3t. The factor pN2t~ is analogous to a bandwidth
parameter in solid state physics. As a result of the band
edge mediated interaction between atoms, the effective
Rabi splitting is enhanced and the spectrum is broadened
by a factor of N2t3. In the Markovian approximation [15],
it is assumed that the dynamical evolution of the system
at time t is determined entirely by the state of the system
at time t Neglecting m. emory effects, Eq. (6) yields

(Jq(t)) = N tanh(B[(t/r) ——I]), (7)

where B = arctanh(1 —2r/N) and r = 32~3~'t3B~~'/
2pN2~'. It is clear from Eq. (7) that the collective decay
rate at the band edge of an isotropic PBG is proportional
to N 3 and the delay time 7- of superradiance is propor-
tional to N ~ . As a result, the superradiant intensity,
which is proportional to d(J3(t)&/dt, scale—s as N ~ .

One can see from Eq. (7) that lim, (Jz(t)& = —N. In
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the Markovian approximation, all atoms decay to the
ground state and there is no localization of superradiance.
While the Markovian approximation does give the correct
collective time scale factors, it fails to properly account
for memory and feedback effects. These effects are
particularly important in a photonic band gap where
photons can bind to atoms [9].

To recapture this localization effect, we solve the
system of Eqs. (6a) and (6b) exactly using numerical
methods [18]. In Fig. 1 we plot the atomic population
inversion (J3(t))/N (solid curve) and atomic dipole mo-
ment D(t)/N = ~(JI2(t))(/N (dashed curve) as a function
of PN2/3t. In Fig. 2 we plot the phase p, (t) of the atomic
polarization (J~2(t)) for the same initial condition (5).
Clearly, the collective spontaneous emission at the edge
of a PBG displays striking distinctions from the free space
case: (i) In the steady-state limit the population inversion
(J3(t))/N is not equal to —1. This follows from the fact
that the single atomic population inversion in the excited
state ~2) remains nonzero [11]. This signifies localization
of superradiant emission in the vicinity of the atoms. (ii)
The atomic polarization evolves from its infinitesimal ini-
tial value to a steady-state macroscopic value. This is dis-
tinct from the free space superradiance where the atomic
steady-state polarization is equal to zero. This sponta-
neous symmetry breaking in the atomic polarization field
is analogous to lasing without a cavity mode. It suggests
the possibility of observing macroscopic quantum coher-
ent superpositions of states. (iii) The evolution of (J3(t)),
D(t), and p(t) displ, ays collective self-induced oscillation
instead of a simple decay as it is in free space. These os-
cillations are analogous to the collective Rabi oscillations
of N Rydberg*s atoms in a resonant high-Q cavity [19].
In addition to amplitude oscillations, the phase of the
macroscopic polarization rotates in the steady-state limit
with a frequency proportional to the magnitude of vac-
uum Rabi splitting. (iv) The collective time scale factor
for the isotropic PBG is proportional to N / rather than N
as it is in free space. That is, the collective decay rate of
superradiance is proportional to N / and the peak super-
radiance intensity, which is proportional to d(J3(t))/dt, —
is proportional to N / rather than N .

Our numerical results reveal qualitatively similar
behavior for different initial conditions. In particular,
macroscopic polarization emerges for any initial state
for which (J3(0))/N & 0, and the steady-state limit
(JI2(~))/N is independent of the initial (infinitesimal)
value (JI2(0))/N. The delay time required for super-
radiant emission, however, decreased noticeably as
(JI2(0))/N was varied from 10 to 10 3. The magnitude
of the macroscopic steady-state polarization (JIz(~))/N
decreases monotonically from 0.42 to 0.15 as the initial
inversion (J3(0))/N was decreased form 0.95 to 0.3. In
the absence of population inversion [(J3(0))/N ( 0], we
find that macroscopic polarization (in the long time limit)
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FIG. l. Atomic inversion ( J3(t l) /N(solid curve) and ampli-
tude of the atomic polarization D(t)/N =

~( Ji2(t))[ /N (dashed
curve) in an isotropic PBG as a function of the scale time
pN2/'t for initial condition (10) with r = 10 ".

cuk =— tu, + A(k —k(I) . (8)

Using the anisotropic dispersion relation (8), the Green s
function in Eq. (2) and its integral for the case of cu, t » 1

become

~ (t tl) — p i m /4/(t t t)3/2 (9a)

I i i & a I t & a I ~ ~
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FIG. 2. Phase angle of the atomic polarization as a function
of pN'/'t for the same parameter as in Fig. l.

occurs only if the initial state itself has a macroscopic
polarization.

The collective time scale factor of N / was found
above using the isotropic PBG (model I). This exponent of
N, however, depends sensitively on the dimension of the
phase space occupied by band-edge photons of vanishing
group velocity and the resulting band-edge singularity in
the overall photon density of states. In an isotropic band
edge, we have overestimated this phase space using the
entire sphere ~k~ =

king. For a real dielectric crystal in
three dimensions with an allowed point-group symmetry,
the band edge is associated with a point k = ko (or a
finite collection of symmetry related points) rather than
the entire sphere (k( = (ko(. In model II, we choose the
"effective mass" dispersion relation to be of the form
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G(r —r') dr' = KZ p,'"e' "/Pi —t42~ ~ '"
3 'I

where p3 = co2td2&/8~2 hood / A / co . It is
'

ht-
forward to verify, using Eqs. (6a) and (6b) and the
Green' s function (9a), that x and y are now functions of
a new dimensionless time variable p3N~ t In. the Mar-
kovian approximation, (Jz (t)) is again determined from
Eqs. (6a), (6b), and (9b),

(J3(t)) = N tanh—(B[(t/ rq )
' —I]j, (10)

where 7 3
= B /4p3N . It is clear from Eq. (10) that in

an anisotropic 3D PB6, the collective decay rate is pro-

p . As a result, the superradiance inten-portional to N2 . A
sity, which is proportional to d(J3(—t)) /dt, is proportional
to N3 .

Model II exhibits both localization of superradi ance
and spontaneous symmetry breaking . To see this, we
solved Eqs. (6a) and (6b) numerically [I 8] using Eqs. (9).
In Fig. 3 we plot ( J3(t)) /N (solid curve) and D (r)/N =
~ ( Jzi(t)) ~ /N (dashed curve) as a function of P N A
e ore, superradiance is localized in the vicinity of atoms

and the system tends to the steady state with macroscopic
atomic polarization and rotating phase .

The strong dependence of the collective processes on
the structure of the photonic band gap can be associ-
ated with the density of states near the band edge of a
PBG. As discussed in Refs. [9,1 1], the isotropic disper-
sion relation leads to a photonic density of states p (co )
at a band edge co ~ co, which behaves as (co —co, )
For the anisotropic dispersion (8) this becomes p (co)—

)
i /2

In conclusion, we have demonstrated that localization
and macroscopic coherence in superradiant emission oc-
cur near a photonic band edge even in the absence of a di-
electric defect mode or other cavity mode Tho e. is suggests
the possibility that ordinary light emission in a perfectly
periodic dielectric may exhibit coherence properties with
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FIG. 3. A tomic inversion ( z(Jt)) /N(solid curve) and ampli-
tude of the atomic polarization D (t)/N =

~ ( »J(t)) ~
N/(dashed

curve) in an anisotropic 3D PBG as a function of the scale time
p3N'r for $~ = (27r~, /p~N2)V = 10 and r = 10-"

infinitesimal threshold. For the case of a physical three-
dimensional anisotropic gap, the superradiant emission
occurs much faster and with higher peak intensity than
conventional superradi ance. These results are based on a
simple model of point superradi ance in which N atoms are
confined to a region smaller than the wavelength of light.
The spontaneous atomic polarization in the steady state is
analogous to the emergence of a "super' u id" order param-
eter for photons . If the volume of superradi ance is made
larger than a cubic wavelength, alternate forms of sponta-
neous symmetry breaking may arise from the spatial de-
pendence of the effective atomic resonance dipole-dipole
interaction (RDDI). In general, RDDI causes a breaking
of the permutation symmetry of the N -atom wave f t

). ts may diminish the magnitude of the macroscopic
steady-state polarization, and lead to a "Bose glass" under
certain circumstances.
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