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Screening in Semiconductor Nanocrystallites and Its Consequences for Porous Silicon
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Consequences of the modified dielectric properties of semiconductor crystallites are explored. The
notion and usefulness of an effective dielectric constant are analyzed using a self-consistent linear
screening calculation. The binding energy of hydrogenic impurities is defined and calculated, and it is
shown why these are always ionized in porous silicon. Self-energy terms associated with the surface
polarization charge are discussed in the context of Coulomb charging effects. Their contribution to
exciton binding energies is also determined. Consequences of charging effects on carrier injection in
porous silicon are finally considered and shown to be important.

PACS numbers: 71.55.Cn, 73.20.Dx, 78.55.Hx

Electrostatic screening in semiconductor quantum dots
is expected to be different from its bulk counterpart. In
particular, there is doubt of whether or not a macro-
scopic treatment based on the use of an effective dielectric
constant e is still meaningful. Such a macroscopic for-
mulation combined with effective mass theory was used
previously to calculate the binding energies of excitons
[1,2] and hydrogenic impurities [2]. The important ques-
tion there is to know which value, if any, should be given
to e. This was recently addressed in two different calcula-
tions, a phenomenological one [2] and a full quantum me-
chanical one [3] which concluded that confinement should
reduce e but differed with respect to the magnitude of this
reduction. However, both of them assumed the notion of
e to remain a valid one and did not check it on the basis
of a microscopic self-consistent calculation. Our aim here
is to address this important question by performing self-
consistent linear screening calculations for quantum sized
clusters. We will consider four distinct situations: hydro-
genic impurities, particle self-energies, Coulomb charging
effects, and finally excitons. The numerical calculations
are performed here in the case of silicon clusters, but the
conclusions are general. Some consequences for porous
silicon are also discussed.

Let us first discuss the hydrogenic impurity case. We
start with one single donor within a spherical crystallite
of radius R (= 3aoN/327r, where ao is the bulk lattice
constant and N is the number of Si atoms). The bare
potential energy of the donor electron at a distance r
from the nucleus of charge +e is Vb(r) = e /r. This—
will polarize the electron gas of the crystallite and, within
linear screening theory, will result in a self-consistently
screened potential V(r) which can be written

achieved by ab initio methods for the clusters of interest
with size in the 2 nm range. We have thus decided to
use a semiempirical LCAO (linear combination of atomic
orbitals) technique as describe in Ref. [4]. Following
Ref. [5], this can be made self-consistent by adding to
the original matrix elements charge dependent Coulomb
terms. It is reduced to a calculation of potentials, due
to point atomic charges, which allows us to cast the
final result under a form similar to (1) but in a matrix
formulation, whose size is equal to the number of atoms.

We then apply it to spherical crystallites containing one
donor. These crystallites are saturated by hydrogen atoms
to avoid dangling bonds. Typical results for the impurity
at the center are given on Fig. 1, where the ratio VJ/Vb, is
plotted versus the distance from the center. The results for
the Si atoms within the cluster are seen to scatter around
a straight line ending on the point V/Vb = 1 when r = R.
This result can be given a straightforward interpretation in
the classical picture, where the crystallite is considered as a
continuous medium of dielectric constant e;„embedded in
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The problem is to know if there is a local relationship
between V and Vb and, if so, whether or not the
ratio V/Vb is related to the bulk dielectric constant. A
complete answer to the question necessitates a full first
order self-consistent calculation. At present this cannot be

FIG. 1. Ratio of the self-consistent values of the potential to
the bare one as a function of the position in a cluster with
915 silicon atoms. The open circles correspond to hydrogen
atoms. The straight line corresponds to the classical expression
[see text, Eq. (3)].
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where 0 is the angle between r and r'. V;„(r,r') is due
to the surface polarization charge density which we shall
call the "image" charge density by analogy with planar
situations. The calculation of Fig. 1 corresponds to the
centered impurity, where the potential energy simplifies to

v(r) = —e „+—
(

—
)in ~ out in

(3)

When ~,„, = 1 we get V/Vb = 1 at the surface as
found in the numerical calculation. The dispersion of
the calculated points around the straight line [Eq. (3)]
in Fig. 1 shows that the effective dielectric constant

(i) can only be defined as an average property and

(ii) cannot be determined precisely, since the intercept of
the straight line at r = 0 is subject to some uncertainty.

We now consider the donor binding energy F& which
we define as the difference between the lowest conduction
states of the same crystallite with one excess electron,
without and with the donor impurity. The computed
values are plotted in Fig. 2 which shows that E& can
take fairly large values, in agreement with the conclusions
of Ref. [2]. A fairly accurate expression is found in

first order perturbation theory by calculating the average
potential from expression (3) with the wave function
sinkr/r of effective mass theory. This gives
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FIG. 2. Energy levels of hydrogenic impurities (~, donor; Q,
acceptor) obtained with the self-consistent calculation (a,„, =
1), self-energy X(R), Cou1omb energy U(R), and exciton
binding energy E»(R) as a function of the particle radius
R (continuous lines for a,„, = 1, dashed lines for a„„=1.77
(porous silicon [9]).

another medium of dielectric constant e,„,. Then, taking
the center of the cluster as origin, the potential energy of
an electron at point r due to the charge +e at point r' can
be obtained from simple electrostatics as the sum of direct
interaction —e2/(e;„~r —r'~) and a corrective term [1,6],

(a;„—e„„,) (n + 1)r"r"P, (cos0)

n=o &inl ~oui + n(&in + &oui)]R "

Fg(R)=( + )— (4)

An interesting point to notice is that this result remains
practically unchanged when the impurity is moved away
from the center. This is drastically different from what
is obtained in quantum wells. In the bulk the binding
energy is equal to the ionization energy, since the con-
duction band states form a continuum. This is no more
true in crystallites, since these states now form a dis-
crete spectrum. In a perfect crystallite ionization will
occur via the continuum of states above the potential bar-
rier which exists at the surface, with an ionization energy
Ip(R). For the doped crystallite the ionization energy sim-

ply becomes Io(R) + E~(R) It is. thus strongly enhanced
for small crystallites so that the donor electron should re-
main trapped. For porous silicon this is in contradiction
with EPR measurements concluding that hydrogenic im-

purities are always ionized but also that the corresponding
carriers are not found as free carriers [7]. To provide an

explanation for this discrepancy we consider the follow-
ing reaction: The initial situation consists of a neutral
donor and a neutral dangling bond in two different crys-
tallites, the final one resulting from the electron transfer
between the donor and the dangling bond defect. Tak-
ing the bottom of the bulk conduction band as the origin
of energies, the energy of the extra electron in the initial
situation is b, E, —Ez(R), where AE, is the blueshift of
the crystallite containing the donor. In the final situation
it become ~di, —e /(sou, d), where edq is the binding en-

ergy of the dangling bond state and —e2/(a, „,d) comes
from the electrostatic attraction by the ionized donor in
the other crystallite at distance d. The total difference in

energy between the final and initial states becomes

+E (+Eg + +db) + EB(R) —e /(~. „,d) .

As shown in [8] this equation still holds true within
the same crystallite with d = R. With e,„, equal to 1.77
measured for a porous layer with a porosity of 74%
[9], typical values for R = 1.5 nm are b, E; = 0.33 eV
[10], ~db = 0.3 eV, and E~(R;) = 0.72 eV [Eq. (4)] so
that AF is negative when d ~ 9.3 nm. Because of the
high density of dangling bonds in porous silicon [7],
this means that donor states should remain ionized, their
electron being trapped at defects like dangling bonds since
the previous reasoning remains valid for all deep defects.

The following interesting question concerns the self-
energy of particles and Coulomb charging effects. Until
now the level structure of crystallites has been obtained
from semiempirical calculations which implicitly contain
the same self-energy corrections (due to exchange and cor-
relation) as in the bulk. In crystallites we thus need to de-
termine corrections brought by the finite size of the system.
We do this within an electrostatic formulation which corre-
sponds to the "static Coulomb hole approximation" of GW
theory [11]. This is not very good for the bulk but here we
determine in this way only the change in self-energy due to
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the image charge distribution on the surface, which should
be more reasonable. Let us then put an extra electron in
the lowest conduction state P, . The image contribution
X to its self-energy is z(Q, ~V;„(r, r)~P, ) with V;„given by
Eq. (2) with opposite sign. Taking again P, ~ sinkr/r,
which provides an excellent approximation, we get

1 1

~out
')—+sX, (6)

where the first term comes from n = 0 in (2) and 6X is
the corrective term due to the remaining sum. This one
simplifies greatly when e;„+ e,„, » 1 in which case one
gets

2

0 4
e &in +out

&inR out + in
(7)

which is usually small but not negligible. This gives
the shift in energy of the extra electron in the lowest
conduction band state which represents the experimentally
important quantity (Fig. 3). The injection of a second
electron leads to an additional upwards shift given by the
average repulsion with the other electron and its "image
charge" (Fig. 3). With an electron distribution close to
sinkr/r this shift is given by

U(~) =( ' +'")—". (g)

Under injection of n electrons (n small) the lowest filled
conduction states will thus exhibit a shift approximately
equal to X + nU (Fig. 3). Finally, the situation for holes
is completely symmetrical.

We now consider the same corrections applied to
exciton states. To get the proper value for the exciton
binding energy E~x we must add the contribution of
the direct electron-hole interaction —e /a;„r, h and the
different image terms: self-energies of the electron and
of the hole [both given by (6)] plus the interaction of
one particle with the image charge distribution of the
other. The latter one is equal to (1/e;„—1/e, „,)e /R,
and obviously almost exactly compensates the sum of the
two self-energies so that image contribution to the exciton
binding energy reduces to the constant term —26K. With
a carrier distribution close to sinkr/r, we have

Eiix(R) = 1.79e /~, „R —26K. (9)
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To estimate X(R), U(R), Esx(R) numerically, the
problem is still to know what value of e;„should
be used. Wang and Zunger [3] treated this problem
by computing the quantity 1 + 4~g, where g is the
quantum polarizability of the whole sphere. In the
bulk this procedure is exact provided one neglects local
field effects which introduces an error of order 10%
to 20Vo. Assuming this to hold true in crystallites the
procedure of calculating 1 + 4~g might be justified
if the following conditions are met: (i) one can define
macroscopic quantities as averages over unit cells and
treat them as continuous variables, and (ii) the local ratio
between the macroscopic polarization and field is constant
and equal to g. We have seen in Fig. 1 that this seems
more or less verified despite substantial scatter around
the average value. From that point of view, 1 + 4~~
represents one particular way of calculating an average

To get some feeling about the accuracy of such
an averaging procedure we have estimated e;„using
three different approaches: (i) a fit of the self-consistent
donor potential of Fig. 1 by Eq. (3), (ii) the classical
donor potential (3) is used in the LCAO calculation, and

e;„ is adjusted to fit the self-consistent donor binding
energy (Fig. 2), and (iii) a least-square minimization of
V/e;„—Vq in a case corresponding to a bound exciton
with the electron confined on the central atom and the hole
in the highest valence state. Figure 4 shows that there are
substantial differences between the three results mostly
for small crystallite radii due to the different ways of
computing the spatial average of e '(r, r'). Our results lie
between those of Refs. [2] and [3], and their average value

U

FIG. 3. Shift of the lowest conduction level due to the
injection of one electron (X) or two electrons (X + U). The
situation for holes is symmetrical.
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FIG. 4. Plot of the calculated s;„obtained by the fit of
the donor potential (R) and of the self-consistent donor
binding energy ( ) with classical laws and hy a least-square
minimization of V/~;„—Vb in a case corresponding to a
hound exciton (~). The continuous line is a fit of these
values (K;„= 1 + (11.4 —1)/[1 + (0.92/R)'"]). The dashed
curve corresponds to K, of Ref. [3] and the dotted line to the
generalized Penn model of Ref. [2].
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can be well approximated by e;„—I = (11.4 —I)/[I +
(0.92/R)"s] with R in nanometer units [2]. Figure 2
gives X(R), U(R), and Enx(R) computed with e;„ for
e,„, = I and e,„, = 1.77 (porous silicon). The values
of U are so large that the injection of more than one
electron —or hole —in silicon nanocrystallites in porous
silicon must be very difficult if not impossible. However,
when e,„,~ ~ corresponding to the experimental case
where porous silicon samples are in aqueous electrolyte
(e,„, = 80), U reduces to -0.15 eV so that the injection
of two carriers becomes easier [12]. This could explain
the different transport properties of porous silicon in "air"
and in electrolyte.

In summary, we have computed the linear self-
consistent response of semiconductor nanocrystallites in
various physical situations and compared the results to the
macroscopic description. We have considered hydrogenic
impurities and Coulomb charging effects and evaluated
the importance of the so-called image corrections as well
as the justification of the use of a macroscopic formula-
tion with an average dielectric constant. Consequences
on the properties of porous silicon have been discussed.

[I] L.E. Brus, J. Chem. Phys. 79, 5566 (1983); 79, 4403
(1984).

[2] R. Tsu and D. Babic, in Optical Properties of Low
Dimensional Silicon Structures, edited by D. C. Bensa-
hel, L. T. Canham, and S. Ossicini, NATO ASI Se-
ries (Kluwer Academic Publishers, Dordrecht, 1993),
p. 203; R. Tsu and D. Babic, Appl. Phys. Lett. 64, 1806
(1994).

[3] L. W. Wang and A. Zunger, Phys. Rev. Lett. 73, 1039
(1994).

[4] P. B. Allen, J.Q. Broughton, and A. K. McMahan, Phys.
Rev. B 34, 859 (1986).

[5] M. Lannoo, Phys. Rev. B 10, 2544 (1974); M. Lannoo
and J. Bourgoin, in Point Defects in Semiconductors
I, edited by M. Cardona (Springer-Verlag, New York,
1981).

[6] C. J.F. Bottcher, Theory of Electric Polarization (Elsevier,
Amsterdam, 1973), Vol. I, 2nd ed.

[7] H. J. Von Bardeleben, D. Stivenard, A. Grosman,
C. Ortega, and J. Siejka, Phys. Rev. 8 47, l 0 899
(1993).

[8] G. Allan, C. Delerue, and M. Lannoo (to be published).
[9] I. Sagnes, A. Halimaoui, G. Vincent, and P. A. Badoz,

Appl. Phys. Lett. 62, 1155 (1993).
[10] J.P. Proot, C. Delerue, and G. Allan, Appl. Phys. Lett. 61,

1948 (1992).
[11] L. Hedin and S. Lundquist, Solid State Phys. 23, 1

(1969).
[12] J.-N. Chazalviel, F. Ozanam, and V. M. Dubin, J. Phys. I

(Paris) 4, 1325 (1994).

3418


