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Anomalous Spin Dynamics in Doped Quantum Antiferromagnets
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Finite-temperature spin dynamics in the planar t-J model are studied using a method based on the
Lanczos diagonalization of small systems. The dynamical spin structure factor at moderate dopings
shows the coexistence of free-fermion-like and spin-fluctuation time scales. At T ( J, low-frequency
and static susceptibilities show a pronounced T dependence, supporting a scenario related to the
marginal Fermi liquid one, for the explanation of neutron-scattering and NMR relaxation experiments
in cuprates. Calculated NMR relaxation rates reasonably reproduce experimental ones.

PACS numbers: 71.27.+a, 74.72.—h, 76.60.—k

The understanding of spin and charge dynamics in
strongly correlated systems, as realized in cuprates on
doping the reference antiferromagnetic (AFM) insulator,
still represents a challenge for theoreticians. The low-
frequency spin dynamics and static spin response in the
undoped and the doped AFM state in cuprates have been
recently extensively studied by neutron scattering [1]
and in a number of NMR and NQR experiments [2,3].
They established that normal-state spin dynamics differs
qualitatively from the one expected for Landau Fermi
liquids. Generically, the NMR and NQR spin-lattice
relaxation time T& is nearly T and doping independent in
the normal state T ) T, [3], in contrast to the Korringa
law T&

' ~ T in normal metals. Also, in the same regime
the low- cu dynamical susceptibility in doped systems
appears to be consistent with g"(to) ~ to/T [1].

Well understood so far are only undoped cuprates, which
behave in all respects as isotropic quantum AFM's, with
long range order at T = 0. For doped systems NMR and
NQR data on the spin dynamics have been interpreted
within the phenomenological model of AFM correlated
spins [4,5]. Here the T dependence is attributed to the
variation of the AFM correlation length g(T) [4]. At low
hole doping, the dynamics has been mapped on the related
quantum-critical (QC) scaling regime of the nonlinear
sigma model where g ~ 1/T [6]. An alternative scenario
for the low-co, low-T behavior has been given in terms of
an anomalous T dependence [not directly related to g(T)],
introduced within the marginal Fermi liquid hypothesis [7].

Among the microscopic models the most helpful for the
discussion of spin dynamics in strongly correlated metals
is the t Jmodel [8]-

H = —t g(cj,c;, + H.c.)
(ij )s

+ J g(S, . S~ —
4 n, nj),

(ij)

where c;, (c;,) are projected fermionic operators, taking
into account that the double occupancy of sites is not al-
lowed. In spite of its simple form the model proved to
be very difficult to analyze, analytically [8] as well as

numerically [9]. The most reliable results related to the
spin dynamics have been obtained by exact diagonaliza-
tion studies [9—11]of small systems, and by means of the
high-temperature series expansion [12,13]. These meth-
ods, however, have not been able so far to get results for
the low-co and dc spin response in the most challenging
parameter regime J ~ t and at intermediate 0 & T & J.

Recently, the present authors introduced a new numeri-
cal method, based on the Lanczos diagonalization of small
systems combined with random sampling over basis states
[14],which allows the study of dynamical and dc response
functions at T ) 0. The method has already been applied
to the evaluation of the optical and dc conductivity in the
t Jmodel on-the square lattice [15].

In this paper we present results, obtained by the same
method, for the dynamical spin structure factor (we later
choose units with Ii = ks = 1),

S(q, cu) = Re dr e' '(S (r)S';(0)), (2)

and the related dynamical susceptibility ~(q, to),

~"(q, to) = (1 —e ~")S(q, ~o). (3)

Since the numerical requirements are the same as for the
conductivity problem, we refer to the description of tech-
nical details in Refs. [14,15]. We study a planar sys-
tem of N = 4 X 4 = 16 sites with J/t = 0.3 and vari-
able doping, i.e., with Nh = 0—10 holes. Typically we
use up to M = 120 Lanczos steps and sampling over
Np —300 states. The method has been tested with the
full-diagonalization results for N = 10 [10]. In compari-
son with the latter results our discrete spectra obtained for
N = 16 are much more dense, so that even minimal ad-
ditional broadening (with a characteristic width g (( J)
yields smooth macroscopiclike spectra. Generally, the
results become unrealistic at low temperatures T ( T*,
where finite-size effects start to introduce size-dependent
features. T* is related to the average level distance in
the low-energy sector. The latter is smallest (for fixed
N) in the intermediate-doping regime 0.12 ( ch ( 0.5,
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where we reach T* —O. lt. The low-energy sector be-
comes more sparse both in the low-electron c/, ~ 0.5 and
in the pure AFM regime ch ~ 0.12, leading to an increase
of T'. TThe onset of finite-size effects is monitored by the
appearance of unphysical structures in the high-frequency
spectra, by the dependence on smoothing width g, etc.
We choose further on predominantly q = 0.07t.

We present in Fig. 1 S(Q, cu) spectra at the AFM wave
vector Q = (~, ~) and fixed T = 0.2t ( J, but various

ole concentrations cI, . As noted above, moderate doping
results are reliable in this T ( J regime, while low-
doping spectra already exhibit finite-size effects, e.g. , gaps
appearing in spectra, etc. The most interesting featureuie in

ig. is the qualitative change of the spectra on doping.
Whereas at ch ( 0.12 the spectra are dominated by a
single central peak with the width ~ —2J d h
AFM Vi

ue to the
Viuctuations, in the intermediate regime 0.12 ~ ch ~

0.5 a high frequen-cy component with cu —t emerges
~ ~ ~

7

coexisting wit t e remaining low frequen-cy fiuctuat I,on,s.
is p ausible to attribute the high-co dynamics to the

ree-fermion-like component of the correlated system in
particular, since it appears to be quite independent of J
(provided that J ( t) and tends to exhaust the spectra in the
overdoped cases cI, ) 0.5. Although this observation is
not unexpected [10,16], the coexistence of spin-Iluctuation

be
and ree-fermion time scales at "optimum" d h

een established here for the first time. That is, it is
harder for other methods, e.g. , within the high-T expansion
method, to treat coexisting different time scales. The dual
character is a crucial property, since the free-fermion part
determines to a large extent the static spin correlations S(q)
[and charge density correlations N(q)], interpreted in terms
o a quasi Fermi surface [16]. On the other hand, the
low-~ spin dynamics dominates dynamical and static spin

~ e ~ ~
//susceptibilities, ~"(q, cu)/~ and ~(q), respectively, and

hence also the neutron-scattering and the NMR processes

I ~ ~ ~ ~ I ~

q=(tt, tt)

0 ~ ~~ e-eJtF+~~ ~

~ 0 ~ ~

q=(tt, tt/2)

Fiigure 2 displays dynamical spectra "( '' fq, cop/'cu or

that on
xe c/, = 16, but various T and nonequi valent N tq. oe
at on the 4 X 4 lattice q = (0, 7r) and q = (m/2, 7r/2)

are equivalent. In contrast to Fig. 1, high-co features
are suppressed here. Nevertheless, the free-fermion part
is well separated from the Iow-cu part only for q-
fermions with a well-defined Fermi surface. For other
q (at given low doping) the free-fermion contribution
persists at larger cu ~ J in the form of a long tail, awhile

in the low-co regime it merges with the spin contribution.
The most striking feature of Fig. 2 is, however, the strong
T dependence of low tu sp-ectra, whereas at the same time
the AFM correlation length $ is only weakly T dependent
Here, we can calculate g(T) from the static real space
spin correlations S(r) [the Fourier transform of S(q) =
(S'-5' -)], i.e., g = g; ~i, ~ exp(iQ r;)S(r;)/45(Q). In
the most interesting regime cq = 0. 1 —0.3, we find that
is short, t icallyp y," —1, governed mainly by correlations

tha
at r; = 1. In particular, for Nh = 2 3 g increases 1

an 30% between T = J and T = J/3, in agreement with
high-T expansion studies [12], as well as with Monte
Carlo studies of the Hubbard model [17] and with values
P(T = 0i~ obtained via exact diagonalization within the t-J
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FIG. l. Dynamical spin structure factor S(q = g, co) at vari-
ous hole dopings and Axed T = 0.2t ~ J S fpectra for a planar
16-site system are broadened with g = 0.07t.

do ln c = 3
FIG. . Dynamical spin susceptibilit

oping ch = 3/16 for different q in the Brillouin zone and
various temperatures: T/t = 0. 1 (full line), 0.2 (dashed line),
0.3 (dash-dotted line), and 0.5 (dotted line).
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model [9]. Similar values for g can also be extracted
considering our static y(q).

The above conclusions on yjr(q, or)/or seem to hold
for all ~q

—
Q~ ( ng ', where y(q) —g(Q). The rel-

evant volume in q space clearly increases on doping and
exhausts already for ch = 3/16, 4/16 the majority of the
Brillouin zone, while within the same doping regime scal-
ing does not hold, e.g. , for q = (0, 7r/2). The variation at
or ( J is g"(q, or)/or ~ 1/T, or, equivalently, 5(q, or) is
nearly T and co independent in the same regime, as also
observed in the neutron-scattering experiments [1],where
g"(or) ~ or/T. It should be noted that the universal scal-
ing g"(or) = f(or/T), claimed by several authors [1,17],
seems to be close to the requirement of S(q, or) —const.

The spectra discussed above have as a direct conse-
quence the T variation of the static ~(q) also at T (
J. We observe a pronounced T dependence, e.g. , ~(q) ~
T ' for ch = 3/16, in a wide regime J/3 ( T ( t for all

q within the correlation volume. It should be noted, how-
ever, that we are quite restricted in the range of T/J, so
that more quantitative conclusions on a possible power-
law (or logarithmic) variation with T are not feasible.

We can discuss our results in relation to experimental
ones obtained in cuprates via NMR and NQR relaxation.
The NQR spin-lattice relaxation time T& and the spin-echo
decay time T2 for Cu nuclei are related to electronic spin
susceptibilities by [3,4]
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Note that in the evaluation of T] within a finite system
we have to omit the q = 0 term in the sum [11] due
to the divergent (ill-defined) g"(q, or)/or, or ~ 0, related
to the conservation of total 5, . A proper treatment
would require an independent evaluation of the q —0
spin-diffusion contribution, which, however, seems to be
less important at least for the undoped system [11]. To
allow a direct comparison with experiments we choose
A&(q), A~~(q) as proposed in the literature [4] and t =
0.4 eV [8]. Again J = 0.3t = 0.12 eV.

Results for T~ are presented in Fig. 3(a). For the
undoped case our results for T~ agree with Ref. [11],
but the T variation at T ( J is already influenced by
finite-size effects (due to sparse density of states at low
energies). It is remarkable that T~ appears to be nearly
T independent for a broad range of hole concentrations
0.06 ( ch ~ 0.31 (ch = 6/16 is not included due to more
pronounced finite-size effects caused by the closed-shell
configuration). Only for the overdoped systems with

c/, ~ 0.5 does the behavior at T ( t approach that of

FIG. 3. (a) NQR spin-lattice relaxation rate 1/T~ and (b) the
ratio T, T/T2 both vs T/t for various dopings ch. Note that here
t = 0.4 eV = 4640 K.

a normal Fermi liquid with T& ~ T. Our results are
in agreement, even quantitatively without any fitting
parameters, with recent remarkable NQR experiments
on La2, Sr,Cu04 [3], which reveal nearly T and x--
independent T~ at T ) 300 K and x ( 0.15. We, in fact,
establish a variation of T] with doping, which, however,
becomes more pronounced only for ch ~ 2/16. Although
not essential, the variation of the calculated Ti in the
range ch = 0—2/16 could possibly be an artifact either
due to finite size effects or due to the omission of the
spin-diffusion contribution. We should also stress that
for quantitative comparison with cuprates the simplest
t-1 model cannot be regarded as the complete model.
Anyhow, for the optimum doping lower rates T& are
expected, consistent with the data for YBa2Cu307 [2],
where, for T ) T„T& is again found to be only weakly
dependent on T.

The temperature-independent ratio R = T~ T/T2, as ap-
proximately realized in cuprates, has been interpreted as
evidence for the QC behavior of the effective spin system
[6]. We find quite analogous weak T variation of the ratio
within the t Jmodel, wit-h results presented in Fig. 3(b).
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Here the undoped case is omitted due to inaccurate (finite-
size dominated) results for g(Q), and, consequently, for
T2, obtained on a small system for T ( J. The origin of
R(T) —const is, however, considerably different from the
QC scenario, since the T2(T) dependence does not seem
to be connected (in an evident way) with the $(T) varia-
tion. The results indicate a stronger doping dependence,
even at low doping. Quantitatively, the values obtained
are in reasonable agreement with experimental ones, e.g. ,
R —1700 K at T = 300 K for YBa2Cu307 (ct, —0.23),
while R —2400 K for YBa2Cus0663 [6].

Essentially different T variation of the T] relaxation on
Cu and 0 nuclei, respectively, has been used as evidence
for the importance of strong (AFM) correlations and non-
Fermi-liquid behavior in doped cuprates. To evaluate the
NMRT, ' for ' O we can againuseEq. (4) withamodified
form factor [4], projecting out the AFM Iluctuations at

q —Q. The omitted q —0 contribution introduces in
this case a larger uncertainty. Nevertheless, for cI, =
1/16, 2/16 and T* ( T ~ J we recover results very well
described with the Korringa behavior, i.e., (' TiT)
C. In particular, at ct, = 2/16 we get C —0.3, very close
to the actual value C —0.35 as reported for YBa2Cu307
[2]. For ct, ~ 3/16 deviations from the Korringa law
become more pronounced due to very short $.

In conclusion, we have presented results for the dynam-
ical spin susceptibility obtained within the t-J model with
a new numerical method, for the first time in the challeng-
ing regime of low to moderate doping with J ( t, as well
as T, co ~ J. The most interesting finding is the anoma-
lous low-frequency spin dynamics, showing up also in the
T dependence of static susceptibilities, which is related to
the NMR relaxation times T] and T2, as well as to the neu-
tron scattering experiments. Our results are consistent with
nearly T and a~-indepe-ndent S(q, ai) [or ~"(q, ta) ~ ta/T]
for q around Q, even in the regime where g 4 g(T), but
still well in the normal state. Such T dependence is close
to the concept of the marginal Fermi liquid [7]. A similar
concept has also been discussed in [17].

It is tempting to speculate on the origin of the anoma-
lous low-cu spin dynamics. It is quite plausible to relate
it to the dramatic increase of the density of low-energy
many-body states emerging on doping. The latter show
up in substantially enhanced entropy at low T [18], and
in the strong carrier scattering as manifested in the re-
sistivity p ~ T, established recently also within the t-J
model [15]. An intuitive picture might be that at low
T ( J spin clusters with the characteristic size I —g(T)
behave as nearly independent, whereby their interaction is
effectively blocked by doped holes, thus leading to a large
density of low-~ modes. A more coherent theoretical de-

scription is clearly missing so far. Our study shows that
the t-J model still remains a promising starting point for
these investigations.
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