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A spiral state is proposed to be the stable magnetic structure of perovskite (La-X)MnO; (X: Ba, Ca,

or Sr) with a low concentration of X ions, contrary to the canted state predicted before.

We use a

mean field approximation applied to a model which treats ,, and e, electrons of Mn ions as localized
spins and strongly correlated itinerant electrons, respectively, and includes a strong Hund coupling
between them. We find that the Hund coupling is crucial for the giant magnetoresistance observed
in (La-X)MnO;, indicating that the Hund coupling enhances the dependence of the resistivity on the
induced magnetization in agreement with experiments.

PACS numbers: 71.27.+a, 72.15.Gd, 75.10.-b

Perovskite Mn oxides, (La;-.X,)MnO3; with X = Ba,
Ca, Sr, etc. have recently attracted considerable attention
because of a huge negative magnetoresistance (giant mag-
netoresistance or GMR) near room temperature [1-7].
The resistivity drop due to an external magnetic field is
usually much larger than that observed in magnetic multi-
layers [8]. Indeed, the resistivity in (Pr-Ca)MnO; reaches
1076 times smaller than that without the magnetic field
[9]. This is actually an insulator-metal transition caused
by the magnetic field. The GMR in (La-X)MnOs; is im-
portant not only for the basic physics of strong electron
correlations, but for technical applications, because the
temperature at which the GMR occurs can be controlled
by tuning the carrier numbers. The transition metal oxides
are systems with strong electron correlations and show
a rich variety of physical phenomena [10,11]. Among
them, (La;—,X,)MnQO; are well-known materials in which
an antiferromagnetic insulating phase at x = 0 changes
to a metallic ferromagnetism for 0.2 < x < 0.5 [12]. A
competition between the kinetic and exchange energies
has led to the prediction of the existence of the canted fer-
romagnetism for 0 < x < 0.2 [13]. However, no clear ev-
idence of the canted ferromagnetism has yet been reported
especially by microscopic measurements such as neutron
diffraction experiments. This is in contrast with obser-
vations for, e.g., (La-Sr);CuO4 [14] and V,_50; [15],
where the antiferromagnetic insulating phase caused by
the strong electron correlations changes to an incommen-
surate antiferromagnetism on doping of holes. Thus both
the magnetic and transport properties in the Mn oxides are
left to be explained from the viewpoint of strong electron
correlations.

In this Letter, we study the magnetic phase diagram
and the origin of the GMR in (La-X)MnO; using a model
where correlated itinerant electrons and localized spins
coexist and a strong Hund coupling between them ex-
ists. By making use of a mean field approximation, we
will show that a spiral state becomes stable for small-x
regions on doping of holes in contrast to the canted state
predicted many years ago [13] and accepted since then.
The spiral state changes continuously to the ferromag-
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netic state, and the canted state appears at concentrations
with x close to 1.0. The dependence of the electrical
resistivity on the magnetic field is studied in the strong
coupling limit of the model. The strong Hund coupling
is shown to enhance the magnetoresistance effect, leading
to a qualitative explanation of the experimental observa-
tions [7].

The appearance of metallic ferromagnetism on doping
has been explained by the mechanism of the double
exchange interaction [16,17]. The Mn3" ions in LaMnO3
have three electrons in the #,, state and one electron
in the e, state due to the Hund coupling. Because of
the strong Hund coupling and on-site Coulomb repulsion
between e, electrons, LaMnOs is an antiferromagnetic
insulator. On replacing La atoms with X (Ba, Ca, or
Sr) atoms, Mn ions change to the Mn** state without
e, electrons. The vacant e, state of Mn*" makes it
possible for e, electrons in surrounding Mn3* ions to
hop into the e, state of Mn** so long as the 15, spins
of the neighboring Mn** and Mn** ions are parallel.
Thus a competition appears between a gain in the kinetic
energy and a loss in the exchange energy of 7, spins
which favor antiferromagnetic coupling. With increasing
number of mobile carriers on further doping of X atoms,
the gain in the kinetic energy overcomes the loss of the
exchange energy, which results in a transition to metallic
ferromagnetism around x ~ 0.2.

We consider only Mn ions, disregarding the other kinds
of atoms, La, O, etc. The role of these atoms may be im-
plicitly included in the parameter values in the model. We
treat r,, and e, electrons of Mn ions as localized spins of
S = 3/2 and itinerant electrons of S = 1/2, respectively.
The treatment for #,, electrons may be justified by the small
overlap between 1, wave functions and oxygen p states
and by the fact that XMnOj is also an antiferromagnetic
insulator with a Néel temperature of ~120 K [12]. The lo-
calized spins couple antiferromagnetically with each other
and the strong Hund coupling acts between the localized
spins and spins of itinerant electrons. Because of the ionic
character of the material, there exist strong electron corre-
lations among the itinerant electrons. Thus the Hamilton-
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ian is given by

H = — tZa;rgajU + Zeoa;raa,-g + UZ”iI”il
ijo io i
K
+ J S,"Sj—?ZS,-'a,-. (1)

)

Here, ¢t (>0) denotes the transfer integral of itinerant
electrons between nearest-neighbor (NN) sites, €y the on-
site potential of itinerant electrons, U the on-site Coulomb
repulsion between 1 and | spin itinerant electrons, a,t, (ais)
is a creation (an annihilation) operator of an itinerant
electron at site i with spin o,n;, = a,-f(,a,-(,, J (>0) is the
NN exchange interaction between localized spins, K (>0)
represents the Hund coupling, and o stands for the Pauli
matrix.

We apply the Hartree-Fock approximation to the
Hamiltonian and survey the magnetic phase diagram
of (La;—,X,)MnO; comparing the free energies of the
ferromagnetic (F), collinear antiferromagnetic (AF),
canted (CN), and (1,1,1) spiral (SP) states. Illustrations
for one-dimensional SP and CN states are shown in
Figs. 1(a) and 1(b), respectively.

By using a local spin quantization axis, the one-electron
eigenvalues for the (1,1,1) SP state with a propagation
wave vector 77 + 26 and the CN state with two sublattices
(canting angle 26) are given by

EJY = vy — ecsind * {A} + eZcos’0}, (2
EN = vy + {A} + & * Apecsing}'?, (3)
respectively. Here, e = —2035_ cosky, ek =

2t Z;l:l sink,, where d denotes the dimensionality
(d = 3 in this case), Ag is the effective field, and vq is
the normalized on-site potential . The results are valid
also for two-dimensional (1,1) SP and CN states as well
as for one-dimensional states. The eigenvalues of AF
and F states are correctly obtained in the limits of § = 0
and @ = /2, respectively. Illustrations of Ex° and Ex"
are shown in Figs. 2(a) and 2(b), respectively, for the
one-dimensional case with Az = 2.5¢. The wave vector
is measured in units of the lattice constant. In Fig. 2(a),
the wave vector is shifted by 7 /2 in order to make the
comparison between Ey’ and Ex " easy.

The free energy of the itinerant electrons per site is
calculated for the lowest order of the carrier density &,
which is the number of holes when x is small or the
number of electrons near low density when x is large.
The states near x ~ 0 correspond to those near half
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FIG. 1. Schematic figures of one-dimensional (a) spiral (SP)
and (b) canted (CN) states.
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FIG. 2. Calculated results of the lower half of the energy
eigenvalues Ex for (a) spiral and (b) canted states along the
symmetrical line of wave vector k. Upper halves are not shown
here. Dashed curves are Ex for the antiferromagnetic state.
There are two branches of E) for the canted state because of
the two sublattice structure.

filling in the one-band Hubbard model. By assuming that
A > 2dr, which corresponds to the case of large Hund
coupling, the free energy of the itinerant electrons is given
by the product of § and the band edge of the lower energy
branch occupied by the carriers. The free energy of the
localized spins is calculated in the usual way.

By minimizing the total free energy with respect to
6 with fixed 6, we obtain the phase diagram. Phase
diagrams at zero temperature are shown in Figs. 3(a)
and 3(b) for near half filling (x ~ 0) and at low density
(x ~ 1), respectively. Near half filling, the AF state at
8 = 0 changes to the SP state with § and continuously
changes to the F state for § > 2JS2/t. The angle 6 in
the SP state is given by sind = 6¢/2JS%. As the angle
between NN spins is |7 * 26|, 0 is about 0.37 for
8§ =02, J/t =0.05 and S = 3/2, and it is reduced to
0.137 with a slightly increased value of 6 = 0.22. At
low density, the AF state at § = 0 changes to the CN
state with 8 and becomes the F state continuously for
8 > (JS?/1)2(1 + 2dt/Ag). The canting angle 6 in this
case is approximately given by sind ~ A£8/2JS%(Af +
4d%12)'/2 for small 6.

The physical reason for the appearance of SP and CN
states near half filling and at low density, respectively,
may be explained as follows. As shown in Figs. 2(a) and
2(b), the electronic structures are greatly distorted near
k = (0,0,0) for the CN state and (7 /2, 7 /2, 7 /2) for the
SP state with increasing angle 6. As the electrons are
filled around k = (0,0,0) at low density, it is favorable
for the CN state to gain the kinetic energy by changing
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FIG. 3. Magnetic phase diagrams (8 vs JS?/t) at zero temper-
ature for the (a) spiral and (b) canted states.
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the electronic structure around k = (0,0,0). In contrast,
near half filling, it becomes favorable for the SP state
to gain the kinetic energy because the carriers (holes)
are filled around k = (7 /2,7 /2, 7/2). A more intuitive
explanation can be given as follows. The change from
the AF state to the CN state is nothing but the appearance
of a uniform component in the magnetic structure, which
is correlated with a change in electronic structures with
small wave vectors. On the other hand, the change from
the AF state to the SP state is correlated with a change in
electronic structures with large wave vectors.

The T-x phase diagram for (La;_,X,)MnO; at low
temperatures is shown in Fig. 4. The SP state is stable
in the region close to half filling, i.e., x ~ 0, the CN state
is stable near x ~ 1, and the F state becomes most stable
in the intermediate concentrations. The present result, in
which the AF state changes into the SP state, is consistent
with the theoretical result that the AF insulating phase at
half filling in the Hubbard model or z-J model changes to
the spiral state on doping of holes [18,19].

The approach to the GMR in these systems is based
on the concept of strong electron correlations discussed in
the one-band Hubbard model by Brinkman and Rice [20]
and Ohata and Kubo [21]. We generalize the moment
method [21] to the strong coupling limit of the present
model where both U and K in Eq. (1) tend to infinity.
In this case, the Hamiltonian for itinerant electrons can
be expressed as H = —tZ,-j,(, ELE]-U, where Z‘L(Eig)
is a creation (annihilation) operator projecting out both
the double occupancy of the itinerant electrons and an
antiparallel alignment of the localized and itinerant spins
on the same site.

The frequency-dependent conductivity can be written
as

o ) B
alo) = & [ arer [T anuinne, @

with a current operator J,, 8 = 1/kgT, and the volume
Q. 1t has been shown that the line shape of o, (w)
can be obtained from its second and fourth moments
my and my. It is Gaussian when & = m4/3m35 ~ 1 and
Lorentzian when ¢ > 1 [21]. The resistivity p is defined
as the inverse of the diffusion constant D, p = DI,
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FIG. 4. Magnetic phase diagram for (La,_,X,)MnO; at low
temperatures. SP, F, and CN denote the spiral, ferromagnetic,
and canted states, respectively.

and D is related to the static conductivity o,, by o, =
Ne?D /kgTQ. The moments are evaluated as functions
of concentration ¢ of up (or down) spin sites at high
temperature for a single mobile carrier in the half-filled
state corresponding to x = 0. After counting the number
of paths contributing to m; and m4, we can show that
& =1 for ¢ = 0.5 and that the line shape of ¢(z) is
Gaussian, while it is Lorentzian for ¢ ~ 1 as § —
in this case. When c is close to 0.5, that is, the spin
arrangement is almost random, the resistivity is calculated
as

1 [ma  [81=7p"
P= e - 2¢(l —c) V27 T  a’t

where a is the lattice constant and p = 0.5 — ¢. Noting
that the difference between the number of up and down
spin sites is proportional to the net magnetization M,
i.e., 2p = M /M, with the saturation magnetization Mj,
Eq. (5) can be rewritten as

p = poll — AM/M)*}. (6)

Here, po is the resistivity for M = 0. In the present
model, the coefficient A is 7/4, while it is 1/2 in the
one-band Hubbard model. Furthermore, the value of pg
is larger in the present model than that in the Hubbard
model by a factor 2,/2/3 as expected. The increase of the
value of A is due to the restriction of the motion of mobile
carriers by the strong Hund coupling as interpreted below.

In the strong coupling limit of the Hubbard model,
where double occupancy of each site is prohibited, there
are two types of paths contributing to the moments. One
is a closed path and the other is a retraceable path. The
number of paths of the former type is limited because
of the restriction that the initial states must be the same
as the final state after the hopping of the mobile carrier,
while the paths of the latter type are always permitted
because the mobile carrier can go and come back always
on the same path without disturbing the background spin
states. In the present model, however, there appears
another restriction due to the strong Hund coupling; that
is, the mobile carrier can hop only to sites where the
localized spins are parallel to the spin of the mobile
carrier. Therefore, the paths which contribute to the
moments are those where all of the localized spins are
in the same direction. When the temperature is high,
the number of possible paths is strongly reduced and
the mobility becomes low because the direction of the
localized spins is random. As the direction of the spins
is aligned by an external magnetic field, the carrier can
move freely and the mobility increases, which results in
a negative magnetoresistance. Because of the additional
restriction to the possible paths in the present model, the
resistivity is higher in the present model than that in the
one-band Hubbard model. Consequently, the resultant
magnetoresistance is larger in this case than that in the
Hubbard model.
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One of the characteristics in the GMR of Mn oxides [7]
is that the value of the coefficient A is 3 or 4 times larger
than that obtained in the Born approximation for, e.g.,
spin disorder scattering [22,23]. Our result shows that
the coefficient A becomes 3.5 times larger than that in the
single band Hubbard model. Thus we can conclude that
the strong Hund coupling enhances the magnetoresistance
effect in agreement with the experimental results.

A few possible mechanisms have been proposed so far
for the GMR in (La;—,-X,)MnQO;. One is the formation of
magnetic polarons [4] where the conductivity can be given
by electron hopping of activated type between magnetic
polarons [24]. In this mechanism, the condition of low
carrier density is necessary to define the magnetic polaron
well. The condition, however, is unlikely to be satisfied
for (La;-.X,)MnO; because the GMR is observed for
highly doped oxides. Recently, a mechanism of spin
disorder scattering has been proposed for an explanation
of the GMR in Mn oxides by Furukawa [25]. He has
pointed out that A can be larger than 1 using an infinite
dimension, S — o Kondo coupling model, and succeeded
in explaining the experimental results [7]. In his theory,
the value of A tends to saturate with increasing Hund
coupling. Although the mechanism of resistivity in this
theory seems to be different from the present one, both
theories give the consistent picture that the Hund coupling
plays an important role for GMR in Mn oxides.

In conclusion, we have shown, using a mean field the-
ory, that the antiferromagnetism of LaMnOs changes to
the spiral state, not the canted state, on introducing mobile
carriers into the antiferromagnetic insulating phase. The
canted state is shown to be favored in highly doped Mn
oxides close to, e.g., BaMnO;. Detailed experiments to
clarify the magnetic structures in Mn oxides are desired.
A possible mechanism of the giant magnetoresistance in
Mn oxides has been studied in view of the strong elec-
tron correlations at high temperature. It has been shown
that the dependence of the resistivity on (M /M,)? can be
enhanced by the strong Hund coupling. The tendency is
in agreement with the experimental results. The temper-
ature dependence of the resistivity and magnetoresistance
are left for a future problem.
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