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Dynamical Theory of the Pearling Instability in Cylindrical Vesicles
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We give a simple theory for recent experiments of Bar-Ziv and Moses [Phys. Rev. Lett. 73, 1392
(1994)] in which tubular vesicles are excited using laser tweezers to a "peristaltic" state. Considering
the hydrodynamics of a bilayer membrane under tension, we reproduce some of the qualitative behavior
seen and find a value for the wavelength of the instability in terms of independently measured material
parameters, in rough agreement with the experimental values.

PACS numbers: 47.20.Dr, 47.20.Gv, 68.10.—m, 87.22.Bt

Despite its vast complexity, the living world has
always inspired physical scientists with its habit of
choosing simple geometrical forms for its structures (see,
for example, [1]). While the link between real living
systems and simple models generating similar shapes is
often tenuous at best, recent years have seen remarkable
progress in explaining the shapes of structures such as
normal and diseased red blood cells. While plasma
membranes are mixtures of thousands of lipids and
proteins, extremely simple artificial membranes consisting
of a single lipid reproduce much of their shape behavior in
accordance with equally simple mathematical models [2].
To date most work has focused on equilibrium shapes, but
of course biological systems are usually not in equilibrium
(i.e. dead), and so both theoretical and experimental work
has recently turned to dynamical shape problems.

Quasicylindrical shapes are also abundant in nature,
though they have been less studied than the baglike
shapes reminiscent of blood cells. For example, long ago
Thompson remarked [1] a family resemblance between
certain foraminifera and the shapes of constant mean
curvature found by Delaunay [3]. These shapes are a
"peristaltic" modulation of a cylinder, i.e., a periodic
change in its diameter. More reasonably perhaps, Deuling
and Helfrich called upon these shapes to explain the
observed "myelin figures" found inside and outside aged
red blood cells [4]. Such modulated cylinders have also
been seen in several recent experiments, for example,
Refs. [5,6]; a more extreme form consisting of large
pearls on a string exists as well [5,7].

We will focus on the beautiful work of Bar-Ziv and
Moses, who excited long cylindrical lipid bilayer vesicles
using laser tweezers [5]. Their experiment seems unique
in the degree of control over the circumstances of excita-
tion; time scales can readily be measured and the role of
thermal fluctuations is clearly seen via video microscopy.
Briefly, the observed phenomenon of interest to us is as
follows. Initial preparation of the system yields stable
tubular structures with a wide variety of radii Rp between

0.3 and 5 p, m. The tubes are nearly straight cylinders
some hundreds of microns long, anchored at both ends
by large globules of lipid. Each tube consists of a single
bilayer of DMPC or DGDG. The high temperature used
(—45 C) precludes any in-plane ordering of lipid
molecules, so that away from the localized excitation
a pure fluid membrane model suffices to describe their
shapes. Initially the system is somewhat flaccid, as seen
from visible thermal undulations and the fact that the
tubes are not quite straight.

Application of a laser spot localized to -0.3 p, m pro-
duces a dramatic transformation to the peristaltic shape.
Greater laser power is required for larger tubules. Once
formed, the peristaltic shape has a well-defined wavelength
Ap which is uniform over dozens of wavelengths. What-
ever the initial radius Rp, Ap is found to be 2~Rp/kp, where
the dimensionless wave number kp is always between 0.64
and 1, and typically about 0.8. After prolonged tweez-
ing some buildup of lipid becomes visible at the point of
application of the laser. As the modulation grows more
pronounced, k grows from kp to become slightly greater
than 1. The modulated state is tense: visible thermal fluc-
tuations are suppressed and the tube draws itself straighter
than initially.

In this Letter we give a dynamical theory for the initial
pearling instability. In particular, we will show how to
compute the preferred wave number kp in terms of Rp
and independently measured material parameters. Our
model is an elaboration of the suggestion in [5] that the
instability is of Rayleigh type, but with some significant
changes to Rayleigh's classic analysis [8]. For example,
the Rayleigh mechanism predicts kp = 0. Our mechanism
boils down to a competition between a driving force,
membrane tension induced by the laser, and ordinary
hydrodynamic drag. After a simple back-of-the-envelope
calculation we will add to our picture the bending and
stretching moduli for the bilayer membrane as well as
the friction between its two leaves. On short time scales
the friction tends to lock the layers together [9,10],
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leading to a transient effective spontaneous curvature.
Using independently measured values for all the material
parameters we will then get ko in rough agreement with
experiment. More details will appear elsewhere [11].

We cannot simply identify the modulated cylinders as
equilibrium surfaces of constant mean curvature, since
nothing in the problem selects a curvature. Unlike
Ref. [4] we have no chemical asymmetry between the
inner and outer fluids to generate a tendency to bend, and
hence no spontaneous curvature. Indeed the tubules are
polydisperse, each one's radius being set by the distance
I o between terminal globules and the volume which
happened to get trapped during formation. Nor do we
have a fixed pressure difference as imagined in [1],which
could have set a curvature by a Laplace-type law. Nor
can we appeal to an area-difference strain frozen in at
formation (unlike closed vesicles [12—14]); each layer
of the tubule is initially in equilibrium with a common
reservoir, the terminal globule, and this implies that the
effective spontaneous curvature vanishes [12,15]. Finally,
the Delaunay shapes [1,3] have an initial instability at
wavelength k = 1 [11], larger than any observed value.
In fact, we cannot understand the observed shapes as
equilibrium shapes for some suddenly modified elastic
energy, so we turn to dynamics.

The most famous dynamic instability in cylindrical
geometry is that of a column or jet of water in air
[16]. Despite a superficial resemblance to the pearling
instability, however, Rayleigh s original analysis does
not apply to the micron scale, where water is viscid.
Following Plateau [17], Rayleigh later showed that for
a cylinder of viscid lluid (a "thread of treacle'*) in
air, interfacial tension gives a fastest-growing unstable
mode at k „=0 [8], which is far from the observed
ko. In fact, Rayleigh's answer depends on a boundary
condition which was appropriate for his problem but not
for ours; imposing no-slip boundary conditions at a nearly
incompressible membrane instead of Rayleigh s condition
of no tangential force will give us k,„W 0 (see also [18]).
We will then justify this simple model by incorporating
the full elastic and dynamic structure of the membrane.

To get started let us consider the nature of the excitation.
Initially our membrane is under almost zero tension, as
seen from the thermal motion. When the laser comes close
to the membrane, nothing happens: local heating is not
important. When the laser spot touches the membrane,
it pulls material in by the usual tweezer effect. While
it is difficult to calculate the exact tension so induced,
we may easily estimate it as follows [19]: The applied
laser power of -50 mW, spread over a spot of diameter
0.3 p, m, corresponds to an energy density in vacuum E of
3 X 10 ergs cm . Taking the dielectric contrast between
water and lipid at this frequency to be of order 6e = 0.23
[20], we see that when a lipid molecule falls into the
trap displacing water we gain an energy [21] -CBe aoD,
where ao is the area of the molecule's head, and D is

its total length. Taking 2D —40 A. , we get that each
unit of bilayer area sucked into the trap yields an energy
gain of g —10 3 erg cm ~. While this value is probably
an overestimate, we see that the trap generates a tension
well in excess of the critical value [5] g, „;, —~/Ro—
10 ergcm needed to trigger shape transformations,
where ~ —0.6 ~ 10 ' erg is the bending stiffness of
DMPC bilayers, and we took Ro = 0.7 p, m for illustration.
Let o. =— XRO/K denote the dimensionless tension; thus
cr —10. Following [5] we will take this tension to be
distributed uniformly over the whole surface, even though,
in fact, it propagates outward from the laser spot. If the
laser is removed the tension reverts back to zero, thermal
fluctuations resume, and the tubule relaxes back to its
initially stable cylindrical shape, as observed.

We work in cylindrical coordinates and describe our
shape by the locus r = Ro[1 + u(z, r)], where ~u~ «1.
(Nonaxisymmetric perturbations turn out to be stable
[11].) For our linearized analysis we can treat each
Fourier mode separately, except the constant term uo.
Since uo is the only mode which can decrease the volume,
volume conservation in an infinite cylinder requires (see
[11]) that we choose u(z) = —(uk) + 2uk cos(kz/Ro),
where we truncate all formulas to 6(u ), and uq is
a function of time which we are to find. Using the
area element [22] dS = [1 + u + PRO(Vu)2]RO dz d@, we
at once see that this perturbation decreases the area
A = f dS = Ao[1 + (k2 —1) (uq)2] only for k ( 1 [17].
Hence membrane tension cannot destabilize modes with
k ) 1, as observed. For k ( 1, the laser does work
—BA X on our system as the modulation uq grows.

Where does this energy go? On micron scales we may
ignore kinetic energy, but some energy will go to viscous
dissipation inside and outside the tube. As mentioned,
energy can also go into the internal structure of the
bilayer, for example, the bending elasticity, but let us
neglect such complications for our first estimate. As our
vesicle changes shape, conservation requires a central Row
velocity v, (r = 0) —(Ro/k)uk to transport the Quid from
the troughs to the crests. But membrane incompressibility
and no-slip boundary conditions between the layers and
adjacent tluid require a much smaller value of v, (r =
Rp) —0 at the boundary. Thus we get a velocity gradient
and a shear dissipation of 2AORoilA(k) 'u&, where i1 is
the viscosity of water and the dynamical factor A(k) is
proportional to k at small k. Equating this power loss
to the gain —AX yields a growth rate

y„= ~„/» = QA(k)(1 —k )/Rog.

Approximating A(k) by its small-k (Poiseuille) form, we
see that y reaches it maximum at k „=1/~2, right in
the experimentally observed range. A more exact solution
of viscid hydrodynamics inside and outside a moving
boundary with incompressible-layer boundary conditions
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Here H is the mean curvature of the bilayer midplane, and
P- are the lipid densities of outer (inner) monolayers,
measured at the neutral surfaces of each monolayer.

is the usual static bilayer bending stiffness, d—
D/2 is the distance from the bilayer midplane to the
monolayer neutral surface [23], and p =— Kd /a, where
K is the bilayer compression modulus. For DMPC,
p —3.5 [14]. We have dropped the topological term as
usual. In equilibrium @

— can adjust to their preferred
values and we recover the usual curvature model. More
generally, let us rephrase (3) in terms of the densities
itf

—= @-(1 ~ 2Hd) referred to the bilayer midplane.
Initially we have P — = Po =—etio(1 ~ 2Hod), but after
excitation P- can change along with H Letting p —.
be the relative density change p

— = P —
/Po —1, the

density term of (3) becomes (K/4) ([p + 2(6H)d] +
[p —2(BH)d]2), where BH = H —Ho is the change of
curvature.

Besides hydrodynamic drag and elasticity, there is one
more sink of energy, the interlayer friction. To estimate
the importance of this resistance, write the frictional force
per unit area as b(6+ —8 ), where b is a constant, and v
are the tangential layer velocities [9,10,24]. Then

Ri = bd /il (4)

is a new crossover length scale in the problem [10].
For length scales much smaller than R&, bilayer friction
can dominate hydrodynamic dissipation unless the former
somehow vanishes. In this high-friction regime the hy-
drocarbon chains temporarily lock together, so that un-
der a sudden disturbance the membrane acts like a thin
plate, remembering its initial curvature [25]. Both dif-

gives [11]
1 [k(Ko —Ki) + 2KoKi] [k(lo —Ii) —2IoIi]

A(k) = ——
2k 2IoKo/k + k(I, Ko loKi)

(2)

where I„K,are the usual Bessel functions [21],evaluated
at k. With this A. we get k, = 0.68. Note that k,„ is
a purely geometric constant because we cannot form any
length scale from the tension and viscosity. We also see
from (1) that the tension g, and, hence, laser power, needed
to get noticeable growth rate increases with tubule radius
Ro, as observed [5].

We now outline how to account for the internal
dynamics of the membrane, and when these will be
important to our problem. Symmetric bilayers resist
bending and stretching with an elastic energy which we
may write as [10,11]

F[H, p] =
2R()

dS 2(k )u + —p4

+ P(1 —k )pu (5)

where p —= (Ro/d)(p+ —p ) and

2(k)—= 2
—o. + o. —~k +k +P(1 —k). (6)2 3 1

Normal force balance now sets T„"„—T„„=Ro
' BF/Bu,

where T;, are the fluid stress tensors outside (inside) the
vesicle, evaluated at the boundary. In linear approxima-
tion we have T„+„—T„„=—7tA(k) 'u, where A(k) is the
factor quoted in Eq. (2) [28].

To solve for both u(z, t) and p(z, t) we must supple-
ment the normal force-balance equations by the difference
between the two tangent force-balance equations [10],

b(v —v—) =—Vl(IiF/6p "). We ret—ained only inter-
layer friction on the left side, since it turns out to dominate
both the 2D viscosity [10,11,29] and the traction ~T„
of the fluid [10,11]. Subtracting the two equations and
using the lipid conservation equations gives us Bp/&t =

(k~/bd )BF—/Bp, where again p = (Ro/d) (p+ —p ).
We combine the force balance equations using (5) to get

a &ul
Bt (p) k Ro/Ri )

A(k)

Rpg
3

( ~P(1 —k )

—,'P(1 —k')& &u't

p/4 ) &p)
(7)

The desired growth rate is the positive eigenvalue, if
any, of this linear problem, i.e., y = (—180 sec ')A,
where we took a typical Rp = 0.7 p, m and A solves
A~ —A(gi + y) + goy = 0. Here go = A(k)[2 —o +
k (o. —2) + k4] is the growth rate with zero friction and

gi = go + A(k)p(1 —k ) is the growth rate at infinite
friction, y

—= pRok2/4Ri. Note that as promised Eq. (7)
gives a threshold value cr„;, of tension below which all
modes are damped.

Using measured values of the parameters quoted above,
(7) and (2) yields a broad distribution of growth rates
peaked around k,„=0.65 for any tension o- near our
estimate o —10, which is consistent with some of the
observations and certainly better than the k,„—0 found
in Rayleigh's problem [8,30]. (Alternately the value
of cr can be inferred from the observed growth rate

y „, once this is measured. ) We also see why the

fusion measurements [26] and tether-pulling experiments
[9] yield bd2 —10 6 erg sec cm while the viscosity i1—
10 ergseccm, so we get R~ —1 p.m, comparable to
our system's size Rp.

The projected density fluctuations p
— are related to

6 by conservation [27], V~~ v = —p —. While friction
thus obstructs changes in p+ —p, nothing prevents
p+ + p from quickly adopting its preferred value of
zero, and we finally obtain the quadratic approximation
to the energy
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naive treatment we gave first is so accurate: For large
tension we have go = g~, and the growing eigenvalue
A = cr(kz —1)A(k) becomes completely insensitive to
the friction. Physically, at large tension both the bending
stiffness and the transient spontaneous curvature due to
the layer friction become unimportant. To obtain the
shorter wavelengths seen in other observations we must
suppose either that in those cases the tubule had already
passed into its nonlinear regime or that the effective
values of the friction coefficient b and the area-difference
elasticity parameter P are somehow larger than our
estimates. Of course there may be still more physics
which we have missed. For example, we have not
attempted here to study the propagation of the disturbance
from a point source.

In short, direct application of laser tweezers can serve
as a tool for exploring the dynamics of membranes by
triggering visible shape transformations, complementary
to other controlled techniques such as tether pulling. We
have seen how the laser-membrane interaction may be
modeled by a very simple mechanism. We found that
the membrane acts as a nearly incompressible boundary
for the surrounding solvent, which significantly changes
the instability of cylindrical geometry from the Rayleigh
case in ways which have been observed. Analysis simi-
lar to that presented here should also prove useful in
understanding other dynamical problems involving shape
changes of vesicles, and in particular problems at lower
tension, where the internal membrane dynamics will

play a larger role. One may hope that the insight thus
gleaned can find used in understanding processes, such as
vesiculation, of more direct biological interest.
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