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Nearly Monochromatic Lasing at 182 A in Neonlike Selenium

Joseph Nilsen and Juan C. Moreno
Lawrence Livermore National Laboratory, Livermore, California 94550
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The J = 0 I, 3p 3s transition at 182 A in neonlike selenium is observed to completely
dominate the lasing output, as predicted but never observed before this work. Instead of a single
long pulse we use a series of short 100 ps pulses from the Nova laser to illuminate slab targets of
selenium. The 182 A line is more than an order of magnitude brighter than the usual 206 and 209 A
laser lines. Similar behavior is observed for neonlike ions of germanium, zinc, and nickel.

PACS numbers: 42.60.8y, 32.30.Rj

Since 1984 when the first x-ray lasing was demon-
strated in Ne-like Se [1,2] at 206 and 209 A. one mystery
has plagued our understanding of the collisionally driven
Ne-like x-ray lasers. That is the question of why the
1 = 2 ~ 1, 3p ~ 3s transitions at 206 and 209 A. domi-
nant the spectra while the J = 0 1, 3p 3s transition
at 182 A which was predicted to be the dominant laser
line has always been very weak and was not even ob-
served in the early experiments [1—5]. In recent experi-
ments using the prepulse technique the 182 A. line was
seen much brighter than usual, but still the 206 and 209 A.

lines dominated the output [6]. In this paper we use a
multiple pulse technique to illuminate slab targets of Se,
and we do see the 182 A. line as the brightest laser line

by more than an order of magnitude. Similar behavior is
observed for neonlike ions of germanium, zinc, and nickel
where the 196, 212, and 231 A. lines dominate the spec-
tra of the respective ions.

Experiments were conducted at Lawrence Livermore
National Laboratory (LLNL) on the Nova laser using
A = 0.53 p, m. One beam of the Nova laser illuminated
the selenium coated (1 pm thick) side of a 125 p, m
thick, 3.0 cm long nickel slab which had a 0.48 cm gap
in the middle resulting in an actual length of 2.52 cm.
The Nova laser produced a series of 100 ps full width
at half maximum (FWHM) Gaussian pulses which were
400 ps apart (peak to peak). Each pulse produced 400 J
of energy in a 120 p, m wide (FWHM) by 3.6 cm long line
focus, resulting in a peak intensity of 110 TW/cm .

The principal instruments were a time-gated, mi-
crochannel plate intensified grazing-incidence grating
spectrograph (MCPIGS) and a streaked tlat field spec-
trograph (SFFS); both of these instruments observed the
axial output of the x-ray laser. The MCPIGS provided
angular resolution over 10 mrad near the x-ray laser axis,
while the SFFS integrated over an angular acceptance of
10 mrad. The angular resolution of both instruments was
perpendicular to the target surface. The SFFS provided
time resolution of 30 ps while the MCPIGS was time
integrated for the duration of the three pulses. The
MCPIGS used a 600 lines/mm grating and had spectral
coverage of =150—680 A.

Lasing was determined by observing the high spectral
brightness of the lasing lines relative to the strong
emission lines on axis, the angular collimation of the
lasing lines, the short time duration of the lasing relative
to the continuum emission, and the exponential growth of
the laser output as the length was increased.

For the 3 cm long Se target illuminated with three
pulses as described above, Fig. 1 shows a spectrum from
the MCPIGS spectrograph. The Ne-like Se J = 0 ~ 1

laser line at 182 A dominates the weaker J = 2 ~ 1 laser
lines at 206 and 209 A by factors of 20 and 37 for the time
integrated data shown here. With the sensitivity of the
time resolved SFFS spectrometer set to observe the weak
206 and 209 A lines, the 182 A line consistently saturated
the detector, so a good quantitative comparison was not
possible. However, we do observe the 182 A line to peak
approximately 50—80 ps earlier in time than the 206 and
209 A. lines. The 182 A line is also observed to be an
order of magnitude brighter in the time integrated data
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FIG. 1. MCPIGS on-axis spectrum obtained in the Nova
experiments from 3 cm long targets of Se illuminated by
a series of three 100 ps pulses 400 ps apart with peak
intensity of 110 TW/cm . The Ne-like J = 0 ~ I laser line
at 182 A dominates the spectrum. The 1 = 2 1 lines at 206
and 209 A as well as the other laser lines at 220 and 262 A are
quite visible.
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FIG. 3. Contours of gain versus space and time for the 182 A.

(a) and 209 A (b) laser lines as calculated by the XRASER code
using the hydrodynamic simulations from LASNEX as input for
the case of multiple pulse illumination. Contours represent
15%%uo and 12% changes, respectively. The darkest region for the
182 4 line represents gain greater than 24 cm ' while the same
darkness represents gain greater than 7 cm ' for the 209 A line.

FIG. 4. Contours of gain versus space and time for the 182 A.
(a) and 209 A (b) laser lines as calculated by the XRASER code
using the hydrodynamic simulations from LASNEX as input
for the case of single pulse illumination. Contours represent
9% and 11% changes, respectively. The darkest region for
the 182 A line represents gain greater than 13.5 cm ' while
the same darkness represents gain greater than 5.5 cm ' for the
209 A line.

loss mechanisms such as refraction. The actual small
signal gain of the 196 A line is probably much larger as
the calculations suggest, but the fact that the lasing region
is smaller and the time duration is shorter combined with
the larger refraction losses all combine to make the gains
of the 196 and 236 A. lines appear similar for Ge.

For comparison, Fig. 4 plots contours of the gain versus
space and time for the 182 and 209 A. lines for the case of
long single pulse (600 ps) illumination of a Se slab target
with the Nova pulse peaking at 900 ps. The gain of the
182 A. line peaks 15 p, m from the surface at 550 ps while
the 209 A line has a first strong peak at 720 ps which is
100 p, m from the surface. A second peak is predicted for
the 209 A line, but it is weaker and therefore unlikely to
be observed.

When compared with long single pulse illumination
of a slab target the short multipulse illumination offers
several advantages. The first is the smaller density
gradient in the lasing region, as seen in Fig. 2, which
allows the x rays to propagate through more gain region.
In addition, with single pulse illumination, most of the
optical energy is deposited near the critical density surface
(4 X 10 ' electrons/cm ) and the hot plasma expands to
create an isothermal transparent plasma which tends to

strip past the Ne-like stage as the optical laser continues
to drive the high density part of the plasma. This is why
both the 182 and 209 A. laser lines peak before the peak
of the Nova pulse, as seen in Fig. 4. In contrast, with the
multiple pulses, the first pulse heats, ionizes, and expands
the plasma, but between pulses the plasma cools from
approximately 1000 to 300 eV. This allows the plasma
to recombine to Ne-like. However, the temperature is
still high enough to ionize the Na-like ions and keep the
plasma from recombining further. In addition, this cold
plasma is not transparent to the optical drive laser, and
energy from the subsequent optical pulses can be directly
absorbed by the lasing region of the plasma during the
rising edge of the optical pulse. The pulses can rapidly
heat the plasma but do not have sufficient time to ionize
the plasma significantly in the lasing region. So the
multiple pulses help create stable regions of Ne-like ions
which can absorb the subsequent pulses and lase. We
use only three pulses but potentially this process could be
repeated many times.

In conclusion, using short multipulse illumination of
selenium targets, the neonlike selenium lasing is nearly
monochromatic with the J = 0 1, 3p 3s transition
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at 182 A completely dominating the lasing output as was
always predicted, but never observed before this work.
The 182 A. line is an order of magnitude brighter than
the usual 206 and 209 A. laser lines. Similar behavior
is observed for neonlike ions of germanium, zinc, and
nickel where the 196, 212, and 231 A lines dominate the
spectra of the respective ions. This multipulse technique
enables one to generate short-duration, high-intensity,
nearly monochromatic x-ray laser pulses which can be
used as a strobe for imaging plasmas which are changing
rapidly in time, an example being the plasmas studied in
inertial confinement fusion research.
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