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Band Staggering in Some Superdeformed States and Intrinsic Vortical Motion
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The staggering recently observed in some superdeformed rotational bands could be explained by a
collective model including two quantized quantities. One of the latter being the angular momentum I,
we propose for the other the Kelvin circulation J associated with an intrinsic uniform vortical motion.
This explanation is consistent with the observed strong E2 intraband transitions. Some preliminary
qualitative assessment of the relevant mass parameters is made.
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Recently, an energy staggering, yielding a AI = 4h
quasiperiodic structure, has been found experimentally for
some rotational bands in superdeformed nuclear states.
These structures whose amplitudes correspond merely
to less than 0.1% of the observed transition energies
have been found in the currently available data only in

Gd for one band [1] and in ' Hg for three bands [2].
However, a few other candidates are tentatively proposed
in nuclei of the same superdeformation regions or in
the A = 130 region [3]. The AI = 4It character of this
phenomenon has prompted some explanations involving
the hexadecapole deformation, namely, the F44 collective
degree of freedom [1,4,5]. Such approaches generally
imply a significant static deformation for that mode,
which does not yet seem to have been clearly established
for these nuclei [6].

We will present here an alternative explanation, first on
rather general grounds. In a second step, we will provide
a possible collective model realization of this, namely, by
taking into account a quantized intrinsic vortical motion.

Let us first assume that the energy of the system
depends quadratically on two quantities I and J:

E(I, J) = A —I —BIJ + —J . (1)
A. C
2 2

In Eq. (1), the factor «1 has been introduced for reasons
which will appear clear later. The above quadratic as-
sumption is made here only for the sake of simplification.
We introduce now a smooth function Jy„„,(I) yielding
the minimum of J for a continuous energy function
as given by Eq. (1). The resulting function E„„„(1)=
E(1,J„„„(1))could be named as a "smooth yrast energy. "
We thus have

8 — I
Jy ~(I): I Ey ~(I): (AC B ) Ji (2)

C
' 2C

Let us assume now that I is the angular momentum
and that J is the moment conjugated to a cyclic variable
0 varying within the finite interval defined by 0 ~ 0 ~

~yrast (I)

(5)

2'/p, where p is an integer. Then both I and J are
quantized. For instance, we suppose that they both take
the values 2p Fi. Moreover, we assume that I and J
are replaced in the 3-dimensional quantal version of the
energy in Eq. (1) by I(I + It) and J(J + It), respectively,
whereas the product of I by J stands unchanged (as it
would be the case, e.g. , for a scalar product of aligned
vectors). Upon Taylor expanding the quantal energy
around J = Jy„„,(I), one obtains the following for the
yrast energy corresponding to the quantal yrast value
J = Jy„„(1):

Ey, .„,(I) = Ey„,,(I) + 2AIt(A + B)I + By„„(I),
AC BJ „„(I)——I

Let us determine now Jy„„,(I) If J would b.e a continuous
variable, one would have in lieu of the first Eq. (2):

8 6J„„„(I)= —I ——. (4)

In fact the quantized Jy„„(I) is equal to either Ji =
2It[(B/C)p —4], where [x] stands for the integer part of
x, or J& = 2It[(B/C)p + 4], whichever is closer to the
continuous approximation of Eq. (4). The yrast band is
made of pieces of parabola, each one corresponding to
a different quantized value of J. These quantal leaps in

J~„„as a function of I are the causes of the staggering
under consideration. Note that the same arguments could
have been applied for states other than the yrast ones.

The parameters A, B, and C appearing in Eq. (1) may
depend on many yet unknown factors and vary from one
nucleus to another. Then it may happen that in some cases
that the ratio B/C is close to 2. This particular case is
well suited for the experimental phenomenon considered
here. Indeed when B/C = 1/2, one finds
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WA'C
a„,„(I) = 2

2 4h ) 2Fi

The value of the latter is thus dependent on the divisibility
of the even number I/h with respect to 4. It is vanishing
whenever?/Ii is divisible by 4, and equal to Ah2C/2, oth-
erwise. If one defines the transition energies between two
adjacent yrast states coupled by a collective electromag-
netic field as

E~(I) = E(1 + 2h) —E(I), (7)
the absolute value of the associated staggering parameter
4E~(I), according to the symmetrized quadratic interpo-
lation of Ref. [2], is found to be I independent:

Ah CaE, (I) = (8)

If B/C would not have been exactly equal to 2, but some-
what close to it, one would have observed a quasiperiodic
pattern, namely, with alternating signs for AE~(I), except
for some values of I where the positive or negative values
could be observed twice.

Let us develop now a particular realization of the
preceding collective model. We describe the dynamics
of rapidly rotating nuclei by combining a global rotation
with a uniform intrinsic vortical motion, further assuming
the global angular velocity and the intrinsic vorticity to
be aligned on the same axis (e.g. , the z axis). The
corresponding classical collective velocity field u(r) in the
laboratory frame would have the following components
on the principal axis of the nucleus:

u, = —(II + qu)y, uY
——

~
A + —x, u, = 0,

(9)

introducing the global 0 and vortical co aligned angular
velocities and defining q as the ratio of the characteristic
lengths a and a~ in the x and y directions, respectively.
This field is a particular solution of the well-known clas-
sical Dirichlet problem for the most general linear field
bounded by an ellipsoidal surface as studied by Riemann
and Chandrasekhar [7]. Using such a linear velocity field
in nuclear physics had been already proposed by many au-
thors, including Cusson [8], Rosensteel and Rowe [9—11],
and one of the authors [12,13]. The special case where A
and ~ are collinear has been dubbed by Chandrasekhar
as the Riemann S-type ellipsoid case. The case where
these axes are not collinear is less suited to superdeformed
bands and has been classically studied by Chandrasekhar
(P-type ellipsoids). It may be relevant for the description
of the so-called oblate bands. Recently, a semiquantal de-
scription of such S-type collective motions has been dis-
cussed [14]. It amounts to a generalization of the usual
Routhian approach [15]. Upon solving such a generalized
cranking problem, one gets the total laboratory energy E
as a function of 0, and co. Even though the study of the

one then gets

I=Boo+ CO, J =Ace+BR
and the expression of Eq. (1) for the energy with the
following overall factor A:

A = 1/(AC —B ). (13)
Some questions remain, however, to be answered

before proposing the model of a global rotation combined
with an intrinsic vortical motion as a possible explanation
for the AI = 4h staggering. The first one concerns the
quantification of J which obviously plays a major role
in the proposed explanation. Its quantized character may
be hinted, somewhat intuitively, by the fact that it is
canonically conjugated with an angle 0 defining the
intrinsic rotation [12,14]. Indeed, the motion defined by
Eq. (9) can be decomposed as the product of an inverse
scaling to a sphere, further rotated by an angle 0, scaled
back to its original deformed shape, and then rotated as a
whole by an angle 0. In order to obtain the interaction
term 8co 0 in Eq. (10), both rotation axes must be
collinear. The matching conditions at the boundaries of
the definition interval for the angular variable 0, together
with the C2 symmetry associated with the so-called left-
right symmetry, accounts for the quantization of J by
steps of 2h. A more rigorous proof of the latter has been
provided by the group theoretical approaches of Refs. [9]
and [13]. In Ref. [13], for instance, the components of
J are shown to satisfy Poisson bracket relations (thence
the commutation relations) similar to those of an angular
momentum, leading thus to the integer (or half-integer
in general) character of J. In Ref. [9], it is shown in
particular that whenever the projections of both I and J on
the quantization axis are vanishing, the integer numbers
I and J (in units of R) should have the same parity,
implying thus the quantization of J by steps of 2h as
a consequence of the C2 symmetry. Let us note finally
that J is called, in Ref. [11], for instance, the Kelvin
circulation.

Another point must be clarified now. Indeed the pre-
vious speculations are merely based on energies. Clearly
more insight should be gained by assessing the electro-
magnetic properties of such states. In particular, does the
fragmentation of the yrast line into several parabolic cusps
prevent such a set of states to constitute a band whose
members are linked by strong E2 transitions? Let us an-
swer this question in the idealized case of the AI = 4h

most general case is possible and has been sketched in
Ref. [14], we will discuss here only the case where the
energy is a quadratic function of 0 and cu.

E(A, co) = ~Ace + BcuA + 2CA . (10)

Defining two functions I and J of 0, and cu, and their
inverses, such that
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energy structure given by Eq. (6). It is likely that the
residual interaction will mix for a given value of I, the
unperturbed yrast state (which is an eigenstate of I2 and
J2) and its closest neighbor, as for instance

II}z.,.t
= cosplI, JO} + sing~I Jo + 2}, (14)

II —2}y t
= cost//~I 2, Jo} + sing~I —2, Jo + 2),

(Dl
R

)
~D1C=yR 1—
kyR)

where R is a geometrical factor given by R = 2(q +
1/q). The semiclassical expansion factor D is approxi-

(15)
with obvious notation. It may be proven [14] that the Poi-
son bracket of J with an F2 perturbative electromagnetic
field is vanishing. Therefore, in the quantal case, the J
value is not affected by this supplementary field (see also
Ref. [9]),so that between two yrast states with spins I and
I —2 the E2 transition probability will write

(IiO(E2) iI —2} = cos(p —P)X, (16)
where X is some matrix element involving the intrinsic
state common to both states. If one assumes I to be
a spin value where parabola crossing occurs and that
the mixing is maximum there (i.e., cos2q = 0.5), and
if one also estimates the mixing for the other spin
to be reasonably weak (for instance, cos2$ = 0.9), one
gets a quenching factor for the relevant matrix element
of -0.9, which is within the experimental error bars
from lifetime measurements in superdeformed states [16].
Our hypothesis for the staggering seems therefore not
contradicted by the present status of electromagnetic
properties measurements.

%e will now provide some semiclassical estimates
of the three inertia parameters A, 8, and C using a
truncated 6 expansion of the solution of Eq. (1) when
the effective nucleon-nucleon interaction is a full-Aedged
Skyrme force. This approach, described in Ref. [14], is
a generalization of what has been done in Ref. [17] for
the Routhian case only. The density will be schematically
described as being constant and bounded by a sharp-edged
ellipsoid whose semiaxes are given by

ax =aoq~, a~ =a, =aoq 'I, (17)
where ao is given in terms of the total number of particles
N and of the usual size parameter ro by ao = roN'~,
whereas q is, as before, the a„/a~ ratio. We will also
use below the following unit of moment of inertia:

y = —m,'W'~'q'/',2
(18)

5
which is merely the rigid body moment of inertia for a
sphere multiplied by the shape factor q')3. The various
inertia parameters are given below to order h~ (the first
terms being the Thomas-Fermi estimates):

(D')
A=yR 1 — R, B=y 1—

y

mately given in terms of the effective mass in nuclear
matter (m*/m)NM by

= 10(9m) i'(m"/m) ' N (2o)

1 + ~ (R —1/R) . (22)2yR —1R
In the Thomas-Fermi limit, one may express it in terms of
the irrotational moment of inertia (I;„„t= C —8 /C) as

2fir rot
(23)

For a heavy (A = 200) superdeformed (q = 2) nucleus,
this amplitude takes a value of about 9 keV. This is in-
deed 1 order of magnitude higher than experimentally ob-
served. However, it is clear that the mixing of collective
band states due to the residual interactions is able to re-
duce this value substantially.

In this Letter, we have demonstrated that the energy
staggering observed in some superdeformed bands may
be explained by a generic Hamiltonian depending (e.g. ,

quadratically) on two physical quantities which are quan-
tized (e.g. , as angular momenta). The collective Hamil-
tonian coupling a global rotation with a uniform vortical
motion has been suggested here as a possible candidate for
being such a Hamiltonian. Semiclassical estimates of the
model parameters, if not exactly consistent with the val-
ues deduced from the experimental data within this model,
are not, however, orders of magnitude away. Clearly fur-
ther theoretical work is needed to assess the validity of

(Note that its inverse surface dependence makes D/y
small with respect to 1—typically of the order of a few
percent —in heavy nuclei. ) The contact periodicity in I is
given up to second order in D/y by

2C (D&= 2R 1+
~

(R' —1) . (21)8 (yR)
Disregarding the small second order correction, one

gets exactly from Eq. (21) the KI = 4h energy structure
when q = 2 ~ ~3. This is of course not the expected
superdeformed value. This discussion shows merely that
such a description of the observed structure by an intrinsic
vortical motion is not completely out of range. However,
one has to improve it in two directions: first release the
ellipsoidal shape constraint and, more importantly, include
shell and pairing effects. One may also point out that the
spin degrees of freedom have not been included in our
discussion. It appears, however, that they are contributing
only to second order in the inertia tensor [14,17]. It is
worth noting that the collective alignment appearing in
Eq. (12) is found, even at second order in It, to be equal
to J/R, i.e. , size independent.

The staggering amplitude is given from Eqs. (8), (13),
and (19) by
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the present suggestion, in particular, by taking into ac-
count the quantal shell and pairing effects. Nevertheless,
it has been proven that the level of quenching of F2 tran-
sitions resulting from our modeling of the yrast line is not
inconsistent with the data, considering currently available
accuracy. A more fundamental question, common to most
collective model descriptions, concerns the starting point
of our approach: Is the simple description of rotations
within a two mode coupling Hamiltonian scheme a la
Riemann and Chandrasekhar, at all sufficient? In other
words, do real states correspond to almost exactly con-
served Kelvin circulation quantum numbers? If the answer
to this question is rather positive, then whatever the fate of
our present suggestion about the above discussed energy
staggering (which may be invalidated by any fine tuning of
the inertia tensor), one would be forced to consider more
consistently now the intrinsic vortical motion as a relevant
tool for deciphering nuclear collective excitations.
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