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Why the Entropy of a Black Hole is A/4
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The paper analyzes the relation between Bekenstein-Hawking entropy S " of a black hole and the
statistical-mechanical entropy S™defined by counting its internal degrees of freedom. The mechanism
explaining universality of S " is proposed.
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According to the thermodynamical analogy in black
hole physics, the entropy of a black hole in the Einstein
theory of gravity equals S = A /H(4IP), where AH is the
area of a black hole surface and lp = (JIG/c3)' 2 is the
Planck length [1,2]. This entropy plays essentially the
same role as in the usual thermodynamics. In particular,
it defines the response of the free energy F of a system
containing a black hole on the change of the temperature
T: dF = —S dT. The calculations in the framework
of the Euclidean approach initiated by Gibbons and
Hawking [3,4] relate this quantity with the tree-level
contribution of the gravitational action, namely, the action
of the Euclidean black hole instanton. In this approach
it remains unclear whether there exist any real dynamical
degrees of freedom which are responsible for it.

The problem of the dynamical origin of the black hole
entropy was intensively discussed recently (see, e.g. , [5—
11]). The basic idea which was proposed is to relate
the dynamical degrees of freedom of a black hole to its
quantum excitations. This idea has different realizations.
In particular, it was proposed to identify the dynamical
degrees of freedom of a black hole with the states of
all fields (including the gravitational one) which are lo-
cated inside the black hole [6,11]. By averaging over
states located outside the black hole, one generates the
density matrix p of a black hole and can calculate the
corresponding statistical-mechanical entropy of a black
hole SsM = —Tr(p lnp). The main contribution to the
entropy is given by modes of fields located inside the
black hole in the very close vicinity of the horizon. The
generic feature of this as well as other "dynamic" ap-
proaches is that the statistical-mechanical entropy of a
black hole arises at the one-loop level. However, the
relation between the "topological" (tree-level) calcula-
tions and one-loop calculations based on the counting
dynamical degrees of freedom of a black hole remains
unclear. In particular, 5™depends on the number and
characteristics of the fields, while S does not. What
is the relation between the Bekenstein-Hawking entropy
SB and statistical-mechanical entropy S, and what is
the mechanism which provides universality of 5 "? The
aim of this Letter is to clarify these questions.

(2)

First of all we note that thermodynamic al and
statistical-mechanical definitions of entropy are logically
different. In principle, the thermodynamical entropy S
defined by the resonse of the free energy on the change
of the temperature may differ from S M. Consider, for
example, a thermodynamical system with a Hamiltonian
H. The variation of its free energy is [12]

n

dF = —S dT + P f'dA;. (1)
i=1

Here S is the statistical-mechanical entropy 5
—Tr(p lnp), p = pp exp( —H/kT), f' = (IIH/BA) dA;,
and A; are parameters on which the Hamiltonian H
depends. If in a state of thermal equilibrium the part
of these parameters (A„a = 1, . . . , m ~ n) is uniquely
defined by the temperature T one has

n

dF = —S dT+ P f'dA;,
i=m+1

where STn = SsM + 55, and bS = g, , f'(dA;/dT).
For such a system the thermodynamical entropy 5
determined by the total response of free energy on the
change of temperature differs from S obtained by
counting the dynamical degrees of freedom.

We show that for a black hole STD 4 SsM. It happens
because characteristics of a nonrotating black hole consid-
ered as part of a thermodynamcal system are determined
only by one parameter (mass M), which in turn in a state
of a thermal equilibrium is uniquely defined by the tem-
perature of the system. By varying the temperature one
at the same time inevitably changes the background ge-
ometry in which the dynamical degrees of freedom are
propagating. As the result the statistical-mechanical en-

tropy 5, obtained by summing the contributions to the
entropy of all internal degrees of freedom of the black
hole and defined as S™- —Tr(p lnp), does not coincide
with the thermodynamical entropy S of a black hole.
Moreover, the additional terms, which arise due to the de-
pendence of the geometry of a black hole and the number
of states of quantum fields inside it on the temperature, ex-
actly compensate the dominant statistical-mechanical con-
tribution 5 of the quantum field to the entropy. As a
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result of this compensation, the thermodynamical entropy
of a black hole coincides with the Bekenstein-Hawking
entropy 5 ", determined by the dependence of the mass
(and hence the energy) of a black hole on the temperature
(i.e., by the tree-level free energy Fp).

In order to derive the thermodynamical characteristics
of a black hole it is convenient to begin with the
partition function Z(p). It is related with the free-energy
F [Z(p) = exp( —pF)] and is defined by the functional
integral [4,13]

By using Eq. (4) the one-loop contribution F& to the
free energy can be written in the from F& = —p ' InZt,
where

Zi D[p] exp( —Ip[p]), (7)

and I~[p] is the quadratic Euclidean action of the field
configuration p =—(g, P). The integration is performed
over all the perturbations fields p that are real on the
Euclidean section with metric

Z(P) = D[g, 4] p( 1[g, e]).
ds =Bd~ +8 'dr + r dA, (8)

where I[g, @] is the action for the gravitational field

g and some other fields @. The state of the system
is determined by the choice of the boundary conditions
on the metrics and fields that one integrates over. For
the canonical ensemble describing the gravitational fields
within a spherical box of radius r~ at temperature T~
one must integrate over all the metrics inside r~ which
are periodically identified in the imaginary time direction
with period p& = T& '. Denote by (gp, pp) a point of the
extremum of the action 1[g, @],then

lnZ = il[gp, @p] + ln D[g, @]exp(i12[g, @]), (4)

where g„„=g„„—gp„„P = @ —Pp, and 12[g, @]=
I[g, P] —1[gp, Pp] is quadratic in the perturbations g and

For vanishing background field Pp = 0, the extremum

gp is a solution of the vacuum Einstein equations, which
for given boundary conditions coincides with the Eu-
clidean black hole (a Hawking-Gibbons instanton), while
il[gp, Pp] = —1~[gp], where l~ is the Euclidean action.
The relation (8) implies that the free-energy F can be writ-
ten as

F=Fp+F]+.. . (5)
where Fp = p 'l~[gp] and F~ are the tree-level and one-
loop contributions, respectively, and dots denote higher
order terms in loops expansion.

A black hole will be in equilibrium with the thermal
radiation inside the cavity if its mass M is related to p
as p = 4m r+, where r+ = 2M is the gravitational radius.
(We use units in which G = c = h = 1.) The equilib-
rium is stable if ra ~ 3r+/2. The tree-level contribution
of the black hole to the free energy of the system can be
written in the form [14,15]

Fo =~8 1 — 1 —~+ ~8 —~r+ 8, 6

where Pii = 4m r+(1 —r+/re)'I is the inverse temPera-
ture at the boundary rz. The tree-level contribution So
to the thermodynamical entropy of a black hole defined
as Sp = —Br,Fp —= piiBp, Fp is Sp = 7rr+ —= A/4lp —=TD 2 . TD 2 2

5 ". In addition to this tree-level contribution, which
identically coincides with the Bekenstein-Hawking en-
tropy 5 ", there are also one-loop contributions directly
connected with the dynamical degrees of freedom of the
black hole describing its quantum excitations. %'e con-
sider them now on more details.

3320

B = 1 —r+/r (dA2 is a line element on the unit sphere),
and are periodic in imaginary time coordinate 7. with pe-
riod P [16]. In the one-loop approximation, different
fields give independent contributions to F]. For this rea-
son it is sufficient to calculate the contribution of a chosen
field p and then add all the contributions corresponding
to different fields. The integral (7) is ultraviolet diver-
gent and requires regularization. The regularized value of
F] may depend on some regularization mass parameter p,
[17,18]. Below we assume that the corresponding regu-
larization is made and use the notation Z~ and F~ for the
renormalized values of these quantities [19].

According to its definition the one-loop contribution 5&

to the thermodynamic entropy of a black hole is determined
by the total response of the one-loop free-energy F& on the
change of the temperature. Besides the direct dependence
of F~ on temperature it also depends on the mass M of a
black hole. In the thermal equilibrium M is a function of
temperature. Thus we have (r+ = 2M):

z dFi 2 BFi z BFi dr~=p =p +
dP BP „, Br+ p dP

The first term in the right-hand-side of this relation is
equal to the one-loop contribution 5& to the statistical-
mechanical entropy. In order to justify this claim we use
the fact that the partition function Z~ is related to the
thermodynamical partition function Z (p) of the canonical
ensemble

Z (P) = Tre ~ = +exp( —PE,),
where F„ is the energy (eigenvalue of the Hamiltonian
H of the field p). Namely, Allen [17] showed that
F& —= —P ' lnZi differs from F —= —P ' lnZ only
by terms which are independent of p. Hence we have

P (BFi/BP)„, = P (BF /BP)„, = —Tr(p lnp) —= Si
where p = exp[ —p(H —Fr)]. (Here we used that the
partial derivative (8/Bp)„, with respect to the inverse
temperature p commutes with the Tr operation. ) The
above relations allow one to rewrite Eq. (9) in the form

STD SsM (11)
where AS~ =—p (BFi/Br~)p dr+/dp This relati. on
shows that in order to obtain 5& the statistical-mechanical
entropy must be "renormalized" by adding 55&. In par-
ticular, the relation (11) may give an explanation to the
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entropy renormalization procedure proposed by Thorne
and Zurek [20].

For an investigation of ASi, it is convenient to rewrite
F~, which enters the definition of AS~ as F~ = (F~—
Fr) + Fr. The difference F~ —Fr does not depend on

P and hence one can calculate its value for zero tem-
perature (P = ~). It indicates that the corresponding
contribution to AS& is directly connected with vacuum
polarization. The second contribution to AS~ (connected
with FT term) arises because the complete derivative
d/dp, defined by the relation (9), does not commute with
Tr operation [21]. It is instructive to demonstrate in more
detail the origin of this noncommutation. The thermody-
namical partition function ZT in a static spacetime can be
presented in the form [17]

ZT = [1 —exp( —P cup)]

where cux are the energies of the single-particle states (or
modes), and A is the index enumerating these states. For
the free-energy FT we have

(13)

5'(P/P, e) = e'f(PIP ) — (14)
An explicit form of the function f can be obtained by
analyzing the free energy in a flat cone space. The
high-temperature expansion [23] (see, e.g. , Dowker and
Kennedy [18]) shows that f(x) —x 4 for x ~. The
divergence of F~ at the Euclidean horizon for P 4 PH
rejects the fact that the number of modes that contribute
to the free energy and entropy is infinitely growing as
one considers regions closer and closer to the horizon

F' = gf(P~x) = d~N(~lr+)f(P~),

where f(pcs) = P 'in[1 —exp( —P~)], and N(cuir+) is
the density of number of states at the given energy ~
in a black hole of mass M = r+/2. dN/dp & 0, since
N(cu~r+) depends on the mass of a black hole [22]. This
implies that d/dp and the Tr operation do not commute.

The calculation of the quantities which enter Eq. (11)
is quite complicated. But important conclusions can be
easily obtained by using some general properties of the
free-energy F&. In general case (if P 4 PH = 4rrr+)
the free-energy F& contains a divergence connected with
the space integration over the region near the horizon. In
order to regularize this divergence we suppose that the
integration is performed up to the proper distance l to the
horizon. Denote e = (l/r+)2. In order to emphasize the
dependence of Fi on the dimensionless cutoff parameter
e we shall write F& = F&(P, r+, e). The free energy has
the same dimensions as r+ ' and hence it can be presented
in the form F~(P, r+, e) —= r+'g(P/PH, e), where + is
dimensionless function of two dimensionless variables and

PH = 47rr+ = 1/TH (TH is the black hole temperature).
The structure of the divergence near the Euclidean horizon
can be analyzed by using the curvature expansion of
Fi. The leading divergence near the horizon r = r+ term
ls

[6]. For P = PH, the metric (8) is regular at the
Euclidean horizon, and, hence, the renormalized free
energy calculated for the regular Euclidean manifold is
finite. It implies that f(1) = 0.

The one-loop contribution of a quantum field p to the
statistical-mechanical entropy is

SsM fi(I )
4~

(16)

For a conformal massless scalar field, f '(1) = —I/(360m. ),
and the expression (16) reproduces the result obtained in
Ref. [6]. If the proper-distance cutoff parameter l is of the
order of the Planck length lp then the contribution of the
field to the statistical-mechanical entropy of a black hole
is of the order S& —A/lp, where A is the surface area of
the black hole. In other words, for the "natural" choice
of the cutoff parameter l —lp the one-loop statistical-
mechanical entropy S& of a black hole is of the same
order of magnitude as the tree-level Bekenstein-Hawking
entropy S~".

Consider now one-loop contribution S~ to the ther-
modynamical entropy of the black hole. According to
Eq. (9) S~ can be obtained by differentiation of F~ with
respect to the inverse temperature, provided one substi-
tutes PH = P into F~ before its differentiation

&(1,e)
S, =4'

~PH PH a=o
(17)

Because for P = PH the free energy F~ does not con-
tain divergence at the Euclidean horizon, S~ is finite. It
means that the additional contribution AS~ exactly com-
pensates the divergent terms of Si, so that the contribu-
tion Si of the quantum field p to the thermodynamical
entropy of a black hole is of order of O(eo). In partic-
ular, it means that S~ is independent of the nature of
the cutoff e, which is assumed in S~ and which for its
calculation requires knowledge of physics at the Planck-
ian scale. In other words, the thermodynamical entropy
of a black hole is completely determined by low energy
physics. S& contains the part which depends on r&. This
part describes the entropy of thermal gas of quanta of p
field, located outside a black hole within the cavity of size
r~. In addition, S& also contains part independent of r~
describing quantum corrections to the black hole entropy.
For black holes of mass much larger than the Planckian
mass these corrections are much smaller than A/lp and
can be neglected. As the result of the above described
compensation mechanism, the dynamical degrees of free-
dom of the black hole practically do not contribute to its
thermodynamical entropy S, and the latter is defined by
the (renormalized) tree-level quantity SB".

3321

SSM P2
~P -e=~.

It should be stressed that one must put P = PH only
after the differentiation. The leading (divergent near the
horizon) term of S~ is



VOLUME 74, NUMBER 17 PHYS ICAL REVIE% LETTERS 24 ApRIL 1995

To make the basic idea clearer we restricted ourselves,
in the above discussion, by considering a nonrotating
black hole. The analysis is easily applied to the case
of a charged rotating black hole as well as to their non-
Einsteinian and n-dimensional generalizations.

To summarize, it has been shown that the Bekenstein-
Hawking entropy does not coincide with the statistical-
mechanical entropy S& = —Tr(p lnp) of a black hole.
The latter entropy is determined by the internal degrees
of freedom of the black hole, describing different states
which may exist inside a black hole for the same value of
its external parameters. The discrepancy arises because in
the state of thermal equilibrium the parameters of internal
degrees of freedom of a black hole depend on the temper-
ature of the system in the universal way. This results in
the universal cancellation of all those contributions to the
thermodynamical entropy which depend on the particular
properties and number of fields. That is why the thermo-
dynamical entropy of black holes in Einstein s theory is
always 58".

The author thanks Andrei Barvinsky and Andrei Zelni-
kov for helpful discussions. This work was supported by
the Natural Sciences and Engineering Research Council
of Canada.

Note added. —After the present paper was submitted
to publication, the paper by D. V. Fursaev appeared as
Report No. DSF-32/94 (hep-th/9408066). In this paper it
was argued that for p 4 pH 6-like curvature connected
with a cone singularity gives an additional temperature
dependent contribution to the free energy. If one uses
such a modified free energy to define entropy one would
get p BFt/Bp„, = S& + s, where s is connected with
cone contribution. As the result b, S& in Eq. (11) of
the present paper would contain explicit dependence on
p. Nevertheless, the conclusion of the present paper
that Sm 4 SsM remains unchanged. For p = pH, the
cone singularity disappears and the extra terms in the
free energy discussed by Fursaev vanish. So that the
mechanism of compensation of the divergent near the
horizon one-loop contribution to 5 discussed in the
present paper also remains valid.
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