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Probability of an Eigenvalue Number Fluctuation in an Interval of a Random Matrix Spectrum
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We calculate the probability to find exactly n eigenvalues in a spectral interval of a large random
N x N matrix when this interval contains s « N eigenvalues on average. The calculations exploit
an analogy to the problem of finding a two-dimensional charge distribution on the interface of a
semiconductor heterostructure under the influence of a split gate,
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where P = 1, 2, or 4 for the three possible ensembles
of random Hamiltonians: orthogonal, unitary, and sym-
plectic, respectively. The constant Bp was calculated by
Dyson and Mehta [3]. It is different for different en-
sembles, but is generally of order unity. Here we quoted
Dyson's result in its simplest form when possible degen-
eracies and series of noninteracting levels are neglected.
The fact that (Bn2) « s is the consequence of a so-called
level repulsion.

Another popular quantity was the probability density
P(d) to find two consecutive levels separated by a
distance of d average level spacings. For the orthogonal
ensemble P(d) is well approximated by the famous
"Wigner surmise" P(d) = (m. d/2) exp( vrd /4) [4], if d-

is not too large. The level repulsion can be seen in the
fact that P(d) 0 as d 0. For large d the asymptotic
behavior of P(d) is different from that of Wigner surmise
[1,3]

~'
2lnP(d) = — d ——d + O(lnd).

16 4
(2)

In this paper we calculate the asymptotical behavior
of a more informative quantity Ep(n, s) [1), which is the

Random-matrix theory found its applications in numer-
ous branches of physics. Among them are the statistical
theory of slow neutron resonances, the theory of chaotic
systems, and the properties of small metallic samples
(mesoscopic physics), etc. [1].

The random-matrix theory studies statistical properties
of spectra of large matrices whose elements have a given
random distribution. Much interest has been focused on
the properties of a spectral interval containing on average
s eigenvalues, where s is a small fraction of total number
of eigenvalues ¹ The actual number n of eigenvalues in
this interval fluctuates from one realization of a random
matrix to another. Among different statistical character-
istics of these fluctuations, two, in particular, were the
objects of intensive study. One of them was the variance
of n: (Bn~) = ((n —s)2). Using a thermodynamical argu-
ment Dyson [2] showed that

2
(Bn ) = lns+ Bp,

772

probability of finding exactly n eigenvalues in a spectral
interval containing s eigenvalues on average. It is easy
to see that P(s) = d Ep(0, s)/ds and (Bn ) = g„o(n-
s)2Ep(n, s). Explicit formulas for Ep(n, s) exist only for
the case n « s [5,6]. Here we derive Ep(n, s) for an
arbitrary relation between n and s using the method of an
electrostatic analogy [2]. The limitation of this method is
that it is valid for n, s » 1.

As an important result we present the expression for
Ep(n, s) in the limit ~n

—s~ && s:

m2P Bn
lnEp(n, s) =—

4 In(gs/~Bn~) + B(6n)
'

where Bn = n —s and B weakly depends on Bn. This
distribution is nearly Gaussian for Bn2 « lns, and Eq. (1)
follows. The Gaussian form agrees with the conjecture
put forward by Altshuler et al. [7). For Bn &) lns the
probability of a fluctuation 6n in the eigenvalue number
is, however, significantly smaller than as it would be
determined from a Gaussian distribution with the variance
given by Eq (1).

Let us now turn to the derivation of the general
expression for Ep(n, s) As discusse. d by Dyson [2], the
joint probability density function of the eigenvalues x; of
a random matrix can be written in the form

Q(x~, . . . , x~) = Cexp( —PW),

where

W = g P, (x;) —g ln ~x;
—x, ),

and C is a normalizing constant. This form is nothing
else as the thermodynamic Gibbs factor of the system with
Hamiltonian W at temperature 1/P. This system is a gas
of N point charges. Each pair of charges i and j exhibits
the electrostatic repulsion logarithmically dependent on
the distance ~x; —x, ( between them. The confinement of
the gas is provided by an external potential @,(x). Once
this analogy is established, one can apply the methods of
the classical thermodynamics for finding various statistical
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properties of random matrix spectra. The routine is to
introduce the partition function

e ~ dxi . . dx~. (6)

F=Vi+V2, (7)

where V& is the potential energy in the mean-field approxi-
mation

p(x) —@(x) + P, (x) dx.
2

The quantity P(x), defined as

P(x) = — p(y) ln~x —y~dy, (9)

has the meaning of the electrostatic potential. The other
contribution V2 depends on the local density

V2 = f[p (x)]dx,

f[p] being the free energy per unit length of a Coulomb
gas with uniform density p. As Dyson showed [2] (see
also Mehta's book [1])

fl p] = (1//3 —1/2)p»p .

The first term is the entropy multiplied by the tempera-
ture and the second term is the correlation energy per unit
length (the difference between the energies of the Wigner
crystal and the continuous charge distribution with the
same average density for the logarithmic law of inter-
action). (iii) The overwhelmingly dominant contribution
to the integral (6) comes from configurations not deviat-
ing significantly from an "optimal" density fluctuation that
makes F a minimum subject to

p(x) dx = n, (12)

where t = s/2.
Another simplification may be obtained by noting that

if s «N then we study only a small fraction of the whole

The factor 1/X! corresponds to our treatment of charges
as indistinguishable particles [2]. The quantity Fp(n, s)
is the ratio of two values of Pii calculated for two
different domains of the integration. The first domain
is determined by the condition that exactly n charges
belong to the given interval of length s. The second value
corresponds to the unrestricted domain of integration.

When both n and s are large one attempts to aban-
don the discreet formulation of the problem in favor of
the continuum one. Following Dyson we make three as-
sumptions: (i) There is a macroscopic eigenvalue density
function p(x). (ii) For a given p(x) the free energy of the
gas is composed of two parts

spectral interval. In this case the explicit form of the
confinement potential in the expression (5) is irrelevant
and can be chosen according to our needs. We find it
the most convenient to replace the confinement potential
@, by a compensating background of unit density. The
appropriate modification of Eq. (8) is then

[p(x) —1][p(y) —1]ln~x —y ~dx dy

The probability Ep(n, s) is expressed as

lnE(n, s) = —P minF,

(13)

(14)

where F is given by Eqs. (7), (10), (13), and (11) and
the minimum is sought in the class of continuous non-
negative functions p(x) under the condition (12). This
optimal fluctuation is very close to the one which ensures
the lowest value of the mean-field part V~ of the free
energy F. However, the optimization has to be done
taking into account the local part V2 as well, and we will
make an error of order O(ln ~Bn~) as long as s && 1 and
~Bn~ && 1. As discussed by Dyson [2], we lost such order
terms anyway upon the transition from the discrete to the
continuum formulation of the problem.

Using the variational principle we find that the electro-
static potential @(x)created by the optimal density fiuctu-
ation must satisfy the following conditions:

@(x) = —V, ~x~ ~ t, p(x) & 0,
& —V, [x~ ( t, p(x) = 0, (15)
=0, ix) &r,

if n ( s and, similarly,

y(x) = V,
C V,
=0,

ix( t, p(x) & 0,
ixi &r, p(x) =0,

fx/ &t,
(16)

otherwise. The meaning of these conditions is that the
Coulomb gas breaks into "metallic" regions, where the
potential is perfectly screened, and "insulating" regions,
where the charge density p(x) vanishes and there is no
screening. The quantity V is some constant [it is a La-
grange multiplier corresponding to the requirement (12)].

Consider the case n ( s first. We notice that this prob-
lem is equivalent to another one, which at first glance
appears completely different. We are referring to the
problem of finding the charge distribution of a laterally
confined two-dimensional electron gas (2DEG) in a het-
erostructure. The reason for this is as follows. Because
of a large aspect ratio in some such devices, they may
be considered as translationally invariant in one of the
dimensions. Then the usual Coulomb interaction of two-
dimensional charges leads to the logarithmic interaction
in terms of the one-dimensional charge density. This is
precisely the type of interaction that we are having in our
Coulomb gas model.
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Consider a simplified model of the split-gate device on
the GaAs/Al„Ga( As heterostructure studied in Ref. [8].
In this model (see Fig. 1), ionized donors and the two-
dimensional electron gas are characterized by continuous
charged densities. The donors constitute a uniform posi-
tive background compensated by the 2DEG. The split gate
is represented by two semi-infinite metal planes separated
by the gap of width 2t centered at x = 0. The system is
translationally invariant in Y direction and all the charges
and the gate are in the plane g = 0.

Suppose a voltage difference V is applied between
the gate and the 2DEG. The 2DEG under the gate is
depleted and confined to a strip —b ( x ( b. In the
regions b & (x ~

~ t the charge density is due to the
background only. If we subtract the total charge den-
sity from the background charge density, then this new
quantity will be nonzero in three disconnected regions: in
a central strip of 2DEG and in the metallic gate. Con-
sidering the analogy discussed above, we designate this
quantity by the same symbol p(x) as the eigenvalue den-
sity of a random matrix. Let the width of the strip of the
2DEG be 2b, then the p(x) in units of the background
charge density is [8]

p( )=xReg(b —x )/(s —x ). (17)

ji Z

FIG. 1. The model of the split-gate device. The two. shaded
areas represent the gate in the shape of two semi-infinite planes.
Beneath the gate the two-dimensional electron gas located in
z = 0 plane is depleted. The density of the electron gas does
not vanish only in a narrow strip (grey area) between the two
halves of the gate.

The consequence for the distribution of the eigenvalue
density in the optimal fluctuation is now that it is clearly
given by the same formula (17). The parameter b ( t
can be found from Eq. (12). The graph of p(x) is shown
in Fig. 2(a). Note that for n = s, b = 0, and p(x) = 0 in
the interval —t ~ x ~ t. This particular case was studied
by Dyson [2] to obtain the asymptotic form of Ep(0, s)
and P(s).

To calculate the free energy corresponding to the
fluctuation we need to know the distribution of the
electric field in the Coulomb gas model. It can also be
obtained by knowing the corresponding distribution for
the split-gate device. Namely, the field in the Coulomb
gas is by the factor of 2 weaker. The reason for
this is that the potential due to real two-dimensional
charges is —2 jp(y) In~x —y~, whereas the potential (9)
in the Coulomb gas model is twice as small. With this
correction the electric field in the Coulomb gas model is

p

--1

-t-b Ob t

—dsb(x)ldx = ss Isng(b —x )l{s —x ). (18)

The electric field vanishes everywhere where p(x) is
nonzero, in agreement with Eq. (15).

The case n ) s can be reduced to a similar electrostatic
problem. The gate depleting the 2DEG now has the
geometry of an infinite strip of width 2t. The 2DEG
survives only at ~x~ ) b with b ) t, and in the regions
t ( ~x~ ( b p(x) is zero. Returning back to the Coulomb
gas model, we find that the eigenvalue density [Fig. 2(b)]
and the electric field of the optimal fluctuation are given
by the same expressions (17) and (18) as in the case n ~ s.

The calculation of the parameters of the optimal fluc-
tuations is straightforward and the answer can be given
in terms of the complete elliptic integrals [9]

mt Vn
v, = —,v = ~t[E(k) —k"rc(k)],

4 2
'

n = 2t[E(k') —k K(k')], (19)

when n & s and

mt k Vn+
g/2

2t
n = —,E(k'),

, [IC(k) —E(k)],

(20)

when n ) s. Here, k = 1 —k' and k' is defined as
k' = b/t for n ~ s and k' = t/b for n ) s. Also Vq =
V in both cases. Equation (14) now reads

{nRp(n, s) = —PVs —({——V+0(ln(n —s(). {21)
2

To use this formula one first has to find the k cor-
responding to given n and s and then substitute this
value into the expressions for V and V]. For exam-
ple, for n (( s one finds that k' = (2n/2rt)'t~ and then
V = vrt —(n/2) [In(82rt/n) + 1]. As a result,

InEp(n, s) = ——rr t + Pn —1 + —7rt ——n
P P

4 2 g

+ — —n —l + — ln —1 . 22

gSi{I~slI

0 t b x

FIG. 2. The optimal eigenvalue density fluctuation p(x) for
(a) n ( s, (b) n ) s. The grey and blank regions show the
locations of the 2DEG charge and the gate charge, respectively,
in the equivalent gated devices.
given by the expression
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This formula coincides with results given in Refs. [5,6]
and reproduces Eq. (2) upon the substitution d = 2t and
n=O.

Consider now the case of small fluctuations )6n) « s,
which corresponds to k &( 1. In this limit the expansion
of Eqs. (19) and (20) in asymptotic series yields

2

Vi = (rk) ln —+ —,V= —tk
4 1

8 k 4 '
2

4 11
I&nl = «' »- + —l.

I 2&

Using Eq. (21) one recovers Eq. (3). As a possible
method of the numerical check of the latter, we suggest
calculating the ratio of two subsequent even moments
M2 +2 and M2 of Ep(n, s) defined as M2m = g„o(n-
s)2 Ep(n, s). This ratio is expected to be

In conclusion, we studied the probability Ep(n, s) to
find a given number n of eigenvalues in an interval of a
random matrix spectrum defined by the condition that this
interval contains s eigenvalues on average. %'e calculated
the asymptotical behavior of Ep(n, s) for large s. It is
found to be Gaussian for small fluctuations of n around
its average value and to decay faster than Gaussian at
6n2 ~ lns. We suggested a method of the numerical
verification of our result based on calculating of large
order moments of Ep(n, s)

This work was supported by NSF under Grant
No. DMR-9321417.

Note added. —After the submission of this paper, the
authors received a preprint from Professor Dyson [10]
where in Section II he obtained the identical results
(without using the analogy to the semiconductor devices).

M2m+ 2 1 ln2a m

(2m + 1)MzMqm 2 Ins
(24)

where a = 2/vrzp and 1 « am « s2. Whereas for the
Gaussian distribution this ratio is just equal to unity, in
our case it decreases with m. For instance, at m —s/2a
it should be about 0.5.

For completeness we provide also the asymptotic form
of lnEp(n, s) for large positive on, , i.e., for n » s:

Pn2 8n 3
InEp(n, s) = — ln

2 '7TS 2

P 8n
1 ——n ln —I +Olnn . 25

2 '7T5

One observes that the main terms in both Eqs. (3) and
(25) are quadratic in Bn and contain large logarithmic
factors. This can be explained in terms of the electrostatic
analogy as follows. The quantity InEp(n, s) is up to a
constant of the work required to charge a two-dimensional
capacitor by Bn charge units. This work is equal to
Bn2/2C, where C is the capacitance. In the case of
)Bn) « s the width s of the central plate of this capacitor
is much larger than the gap between the plates and C is
logarithmically large. In the case of n » s the situation
with geometrical parameters of the capacitor is reversed,
and its capacitance is thus inversely proportional to a large
logarithmic factor.
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