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The sum of the information gains corresponding to measurements of position and momentum is
bounded by log2DXKP/h for a quantum ensemble with position and momentum uncertainties hX and
AP. The bound implies the Heisenberg uncertainty principle and that the gain of position information
can be maximized only at the expense of momentum information, and vice versa. This exclusion
principle for the information contents of complementary observables is extended to finite Hilbert spaces,
and to the quadrature, number, and phase observables of bosonic fields degraded by Gaussian noise.

PACS numbers: 03.65.Bz, 42.50.Lc, 89.70.+c

Information theory is a natural and effective tool in
communications, parameter estimation, and computation.
One may seek to maximize the information which can be
gained about, for example, a signal from a space probe,
the magnitude of a viral epidemic, or the divisors of a
large number. This optimization of information gain, for
given prior information, is in principle trivial for classical
systems: one can do no better than a complete state de-
termination (e.g. , of the electromagnetic field, the medical
condition of all population members, or the remainders of
all possible divisions). With the exception of Maxwell's
demon [1], any physics underlying classical information
gain is thus limited to the analysis of particular constraints
on measurement (such as sampling rates, research fund-
ing, or computer run time).

For quantum systems, the complementarity of observ-
ables such as position and momentum leads immediately
to the impossibility of a complete state determination
in general, and hence to a greater physical richness un-
derlying quantum information gain. The most important
example is a finite bound on information transfer for any
quantum communication scheme [2,3]; other examples
arise in the areas of quantum cryptography [4], quantum
inference [5], quantum computation [6], and in interpreta-
tional issues [7].

Here a very simple and direct signature of comple-
mentarity in quantum information theory will be demon-
strated, in the form of an exclusion principle for the

information contents of quantum observables. This prin-
ciple states that the information gain corresponding to the
measurement of some observable can be maximized only
at the expense of the information gains corresponding to
complementary observables, and is quantified below for a
number of cases.

First, let the prior information about a quantum system
be represented by a statistical ensemble 8 of possible
states of the system. If the state of the system is known
to be described by density operator p; with probability p;,
then the density operator of the corresponding ensemble 8
is given by [8]

pi pi ~

Further, if p(a~p) denotes the probability distribution of
observable A for density operator p, then the associated
entropy, S(A~p), is defined by [9]

S(A~p) = — da p(a~p) logp(a~p) (2)

Finally, the (Shannon) mutual information corresponding
to a measurement of A on a member of 8 is given by ([10],
Eq. (3.131))

I(A~8) = S(A~pe) —P p;S(Alp;)'. (3)
t

Shannon's fundamental theorem ([10],Chap. 12) states
that I(A~8) in Eq. (3) is the average amount of error-free
data which may be obtained via a measurement of A [11].
For the choice of logarithm base 2 in Eq. (2), this amount
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I(A~e) tr[I—, logp, ] (4)

for quantum information, and it follows in particular that

[3]

I~ = logN, (5)

is quantified by the number of binary digits (i.e., bits)
required to represent the data. A fundamental result of
Holevo [2,3] implies the finite bound

strategy is to search for inequalities of the form
M

L(Ai, . , AM) ( g S(A Ip) ( U(Ai, . 'AM P)
(1 1)

which, together with Eq. (3), yield the exclusion relation

g I(A ~P.) U(A~, . . . , AM, pe) —L(A~, . . . , AM) .

(12)

Ib„,„(n) = log(n + 1) + n log(1 + n ), (6)

where I~ denotes the maximum information obtainable
from an ensemble spanning an N-dimensional Hilbert
space, and Ib„,„(n) the maximum information obtainable
from an ensemble of single-mode bosonic fields with an
average number n of bosons.

The information exclusion principle is exemplified by
inequalities of the general form

I(A& I&) + I(A2I&) + . . . ( J(Ai, A2 ~ ~ pe)

for observables A&, A2, . . ., where J is a nontrivial quantum
bound. Examples include

I(Xg) + I(P ~Z) log2(AX) (b,P)rifi.

for position and momentum, and

I(o.) ~C) + I(o-2~0) + I(o-3~0) ( log2

(8)

(9)

for orthogonal spin components of a spin-2 particle.
Since a nonideal measurement of an observable A cannot
yield more information than a measurement of A itself,
one also has an immediate corollary

I(A) I&) + I(A2~e) + ( J(A], A2, . . . , pp),

to Eq. (7), where A represents an observable correspond-
ing to a (possibly nonideal) measurement of A

The nontrivial bound in Eq. (7) implies that the infor-
mation content of an observable can be maximized for
a given pq only at the expense of the information car-
ried by complementary observables. For example, 1(o.

& ~C)

in Eq. (9) can attain its maximum possible value of log2
[see Eq. (5)] only if the complementary spin components

F2 0 3 carry no information. The exclusion principle is
thus an information-theoretic analog of quantum uncer-
tainty principles, in that for both cases certain characteris-
tics of complementary observables cannot simultaneously
be optimized. Moreover, Eq. (8) immediately yields (and
hence is stronger than) the Heisenberg uncertainty rela-
tion for position and momentum, while a close connection
between the exclusion principle and entropic uncertainty
relations will be demonstrated further below.

A relatively simple strategy will be followed here to ob-
tain the information exclusion relations (8), (9), and others;
sharper relations can be obtained via more sophisticated
techniques as is indicated at the end of this Letter. The

The first inequality in Eq. (11) has the form of an

entropic uncertainty relation [12], indicating a strong con-
nection between the entropic-uncertainty and information-
exclusion principles. However, the latter has some
interpretational advantages, as (i) a primary aim in mini-
mizing uncertainties of various observables (e.g. , photon
number and quadrature fiuctuations) is to increase their
information content [13]; (ii) information, in quantify-
ing data, is a quantity of direct physical significance
(and unlike entropy is invariant under arbitrary rescal-
ing of observables ([10], Sec. 8.11); (iii) the exclusion
relation (7) automatically generalizes to Eq. (10) for
nonideal measurements, whereas much effort must be
expended to find entropic uncertainty relations for such
measurements [14].

The value of the above strategy is that the difficult
part, of finding nontrivial lower bounds L(A~, . . . , AM),
has already been carried out in many cases [14—18]. For
example, let A and B denote two observables of a quantum
system with an N-dimensional Hilbert space, and define

c = max f(ahab)i (13)
a,b

as the maximum possible overlap of eigenstates of A

and B. For nondegenerate A and B a simple variational
calculation yields the upper bound

S(A~ p), S(B~p) —logN (14)

(attained when p = N '1), while the entropic uncertainty
relation

S(A~p) + S(B~p) ) —21ogc (15)

follows from [15], Eq. (6). From Eqs. (11), (12), (14),
and (15) one obtains the information exclusion relation

I(A~8) + I(B~Z) —21ogNc. (16)
Note that Eq. (16) is valid for degenerate A and B
also, as per Eq. (10), since such observables can be
regarded as corresponding to nonideal measurements of
nondegenerate observables [19].

Two nondegenerate observables A and B as above are
defined to be complementary if the distribution of A is
uniform for any eigenstate of B, and vice versa [20] (thus
generalizing the notion of conjugate observables on infinite
Hilbert spaces). For complementary observables one has
the strongest possible from of Eq. (16),

I(A~8) + I(B~C) logN. (17)
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Note from Eq. (5) that this upper bound is the best possible
bound independent of the ensemble density operator.

The orthogonal spin components o.~, o.2, o.3 of a spin-2
particle provide an example of three pairwise complemen-
tary observables. From Eq. (14) and [16], Eq. (22), one
has

variances

lin amp"y
1 —exp[ —2n (N2 —Ni )]

1 —Ni /N2

n'"" " = [exp(fico/kT) —1] (23)

(24)

3

2 log2 ~ g S(o.j ~ p ) ~ 3 log2, (18)

and the exclusion relation in Eq. (9) follows via Eqs. (11)
and (12). Comparison of Eqs. (9) and (17) suggests the
strong conjecture

g l(A ]8) ~ logN
m=1

(19)

for M pairwise complementary observables A&, . . . , AM on
an N-dimensional Hilbert space [21].

Attention will now be turned to exclusion relations for
infinite Hilbert spaces. First, let X and P be n vectors
denoting the position and momentum observables of a
quantum system. A simple variational calculation yields
the upper bound

n 1"
S(X~p) ~ —log2vre + —g log(VarX, )2 J=1

for the position entropy of the system. Combined with
a similar bound for S(P~p), and the entropic uncertainty
relation [17]

S(X
~ p) + S(P ~ p) n logmeA,

the strategy of Eqs. (11) and (12) may be followed as
before to yield the exclusion relation

I(X~C) + I(P jC) log 2(b,X, )q(d P, )q/fi, (22)

which reduces to Eq. (8) when n = 1 [22].
The upper bound in Eq. (22) has a simple semiclassical

interpretation. In particular, the argument of the logarithm
is just the number of nonoverlapping phase-space cells, of
minimum volume (2')", available to an ensemble 8 re-
stricted to a volume 4"(It Xi)q (bX„)t (b, ,P, )q . . (AP„)r,
of phase space. More generally, Eqs. (9), (17), and

(22) suggest that for mutually complementary observables
A&, . . . , AM the upper bound in Eq. (7) is approximately
given by log3V(pz), where 3V(pq) is the maximum pos-
sible number of mutually orthogonal states consistent with
the ensemble density operator pz.

Equations (8) and (22) may be applied to the special
case of a one-dimensional harmonic oscillator, with mass
m, frequency ~, and annihilation operator a. It is of
interest to further include the effects of additive Gaussian
noise [18], as degradation of position or momentum
information by thermal noise [18], linear amplification
[23], and inefficient homodyne and balanced-homodyne
detection [24] may be modeled by Gaussian noise of

n"' = (1 —ri)/2',

= (2 —n)/2n

(25)

(26)

S(Nlp, n, ) ~ Iboson(n + ny), (29)

respectively, where k is Boltzmann's constant, T absolute
temperature, Ni (N2) the number of excited (unexcited)
amplifier atoms, n is an amplification constant, and g
denotes detector efficiency.

For a harmonic oscillator subjected to Gaussian noise
of variance n~, the position and momentum variances
are increased by fi, (mes) 'n~ and fimcon~, respectively
([25], Eq. (11)). Further, since the geometric mean never
exceeds the arithmetic mean,

[VarX + fI,(mes) 'n~j(VarP + fi,muon~)

~ f'i (fl, 'maiX + n~)((fimps) 'P~ + n~)

~ f'i (2(fi, 'maiX + n~) + ~((fimai) 'P + n~))

= f'(n + n, + —,)', (27)

where n denotes the average value of the number operator
a~a. Equations (20) and (27), and a generalization of
Eq. (21) to include Gaussian noise ([18], Eq. (20)), lead
to the noise-dependent exclusion relation

I(Xg,n~) + I(P~C, n~) ~ log[1 + n/(n~ + 1/2)j. (28)

Note that the upper bound is strictly less than Ib„,„(n) in

Eq. (6), and decreases as the noise level increases.
To apply Eq. (28) to quantum communication, note that

position and momentum measurements on an oscillator
are equivalent (up to scale factors) to measurements of
the quadratures (a + a~)/2, (a —a~)/2i of a single-mode
bosonic field, i.e., to homodyne detection of the field [24].
Since information gain is independent of scaling ([10],
Sec. 8.11), it follows in particular from Eq. (28) that the
information gained from a homodyne measurement is
bounded above by log(2n + 1). This bound is achieved
for a suitable ensemble 8 of squeezed coherent states
[26], and hence such states are optimal for single mode-
communication based on homodyne detection. Note as
previously that to maximize the information gain in one
observable, the complementary observable must carry no
information, i.e., the optimal signal states are modulated
with respect to the measured quadrature [26].

An exclusion relation may also be obtained for the
number and phase observables N and 4 of a harmonic
oscillator degraded by the Gaussian noise of variance n~.
For a given average number (N) = n one has [27]
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where Ib„,„ is defined in Eq. (6). Further, S(4~p, n~) is
bounded above by log2vr, while from [18],Eq. (34),

S(Nlp, n, ) + S(C'lp, n&) ~ Iog2~ + l»«„(n~). (3&)

Applying the strategy of Eqs. (11) and (12) yields the
exclusion relation

I(N~L, nz) + I(4$, n&) ~ Ib, „(n + nz) —I»«„(n~) .

(31)

This upper bound is also a strong bound for the maximum
information obtainable from an oscillator degraded by
Gaussian noise [25,27].

Finally, while the derivations of exclusion relations (8),
(9), (16), (17), (22), (28), and (31) rely on entropic in-
equalities of the form (11), stronger exclusion relations
are possible via different methods. For example, consider
an ensemble of equal mixtures of two pure states of a
spin-2 particle. If the angle between the two correspond-
ing spin directions is known to be 8, then the entropic
inequalities in Eq. (21) of [18]yield, via Eq. (12),

3

Q l(rr, g) ~ 3F(3 ' coso/2) —2log2, (32)
j=1

where

F(x) = —z[(I + x) log(1 + x)/2 + (1 —x) log(1 —x)/2].
(33)

However, direct optimization via standard variational
techniques yields the stronger bound [28]

3

g l(~, [e) max[J, (6),J,(tl)],

where

J&(8) = log2 —F(sin0/2),

2, (F) = 2F(2 cos ——F t:os + )
— 8

2 -2 4-
0—F cos ——

-2 4-
It would be of interest to determine whether inequalities
involving relative entropies, as in Eq. (9) of [3], could be
used to improve on the exclusion relations derived here.

In conclusion, a new "information exclusion principle"
has been presented, which quantifies the notion that the
information content of a quantum observable can be
increased only at the expense of the information carried by
complementary observables. This information-theoretic
signature of complementarity has the conceptual advan-
tages of automatic generalization to inexact measurements,
invariance under reparametrization of observables, and ap-
plicability to both finite and infinite dimensional systems.
Technical advantages include measurement-dependent
information inequalities (i.e., exclusion relations) which
are typically stronger than the measurement-independent

Holevo bounds (5) and (6), and direct applicability of
results to quantum communication. For example, the
exclusion relation (28) for a harmonic oscillator degraded
by Gaussian noise immediately implies that squeezed co-
herent states are optimal for narrow band communication
based on homodyne detection. It is hoped to develop the
information exclusion principle further, both as a tool for
finding optimal signal states and for studying correlations
between quantum systems.
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Note added. —A recent result in the literature [29]

implies that conjecture (19) cannot hold in general. In
particular, the ensemble comprising equal mixtures of the
nine states of the form given in Eq. (16) of [29] violates
the conjecture for the N = 3 case.
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