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Comment on "Absence of Localization in a
Nonlinear Binary Alloy"
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In a recent interesting paper, Molina and Tsironis
[1] considered the transport properties of an electronic
nonlinear random binary one-dimensional system. They
studied the mean-square displacement as a function of
time. They also considered the scattering properties of a
plane wave off a disordered nonlinear sample of length
I., and found evidence for having a power law decay
for the transmission coefficient T —L ~. They claimed
that y was seemingly independent of the strength of the
nonlinearity. In this Comment we point out that when
doing a more extensive calculation in a similar model, we
find a y that does depend on the amount of nonlinearity
and thus this behavior differs from the one obtained in [1],
as well as that of previous studies [2].

We consider a somewhat more general model than the
one studied in [1]. The model is that of an electron
with energy F moving along a one-dimensional lattice
with equally spaced delta function potentials of random
strength P„plus cubic nonlinearity [3]. The model is
defined by

2cosk + (p„+ nl'Ir„I )
sink 2

k

Here 'P„ is the value of the wave function at site n, n
measures the strength of the nonlinearity Jt = ~E, and

P„ is a random variable with a uniform distribution of
width q and centered about the origin. This model dif-
fers from the one studied in [1], which includes the dis-
order in the nonlinearity. As they also mentioned the
physics must be generically similar. We analyze the situ-
ation in which we have an incoming and a rejected wave
at x ~ L, P(x) = roe '"(' ~ + r~e'"(' ~l, while for x ~
0 we have a transmitted wave P(x) = te '"' In order to.
have a uniquely defined problem, we proceed by fixing
the output ~t~ = 1 and calculate the corresponding input
ro. To solve these equations we take as initial conditions
9'0 = t and 'P

~
= te . The coefficient ro is given by

ro = e '"[(WL+~ —e "WL+2)/(e '" —1)] and the trans-
mission coefficient by [3] T = [t( )e '" —I( /(Wt+I—
e '"'Itt. +2~ . The computational procedure consists of
generating an ensemble of chains (200 members for
the most part) and calculating (log T), the ensemble
average of logT as a function of n and I.. This is the
standard procedure used in linear localization studies [4].

In Fig. 1 we show the results for (logT) vs logL,
for different values of n ( 0. We note that for very
small values of n the curves yield T —e ~~, while for
values n ~ 10 5 there is a crossover behavior to T-
L ~( ~. As ~n~ increases, 7 decreases monotonically, as
shown in the inset of the figure. If we increase I to larger
values than those shown in the figure, we begin to get
chains in the ensemble that contribute very large values
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for —logT, indicating that we are in a nonpassing region
of the E vs n spectrum, and the ensemble average is no
longer meaningful. Eventually, for ~n ~

or L large enough,
we go to a regime where T decreases as e ~, as pointed
out previously [2]. In the case when n ~ 0 we get to the
latter regime very rapidly, and the power law behavior is
not observed. A more extensive discussion of this and
related problems will be given elsewhere [5].
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FIG. 1. (IogT) vs logL for different n(~0)'s. Here q = ~12
and F = 5. The exponential behavior has

~
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~

=
(0, 10 ", IO 'o). The solid lines are linear fits for differ-
ent n's increasing in powers of 10, starting with 10 ~ (squares)
through 1 (circles), and the circle with the dot is for 8. The
inset shows the y(n) obtained from the fits.
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