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The equilibrium height of a magnetic microparticle levitated by a superconducting micronet ring

of radius b is calculated.

In the mesoscopic domain, when b is the same order as the Ginzburg-

Landau coherence length ¢, the interacting particle-superconducting ring system exhibits a small set of

measurably distinct, quantized, temperature dependent, levitation and suspension states.

As the ratio

£/b decreases, the number of states increases dramatically, manifesting the transition from a mesoscopic

to a macroscopic system.

PACS numbers: 74.55.+h, 85.25.Ly, 85.70.Nk

Since its introduction [1], the superconducting (SC) mi-
cronet has been a subject of considerable theoretical, and
recently experimental, investigations, e.g., [2—4]. Meso-
scopic loops not only exhibit flux quantization, but there is
recent evidence of anomalous Little-Parks oscillations [5],
distinct resistance fluctuation rates depending on whether
a current or a voltage source is applied [6], and the meso-
scopic microladder has a first order critical transport cur-
rent phase transition [7]. Technologically, an attractive
feature of the SC micronet is the designability of the criti-
cal magnetic field H.(T) and current density j.(7) based
on network topology, in lieu of material properties.

In this paper it is shown that fluxoid quantization by
a mesoscopic SC ring with a micronet cross section can
be employed to quantize a length: the equilibrium height
of levitated and suspended submicron sized magnetic
particles. As depicted in Fig. 1, a magnetic particle is
modeled by a uniformly magnetized sphere of radius «,
magnetic moment M = Mz, and weight W. The SC
ring of radius » and the wire cross section so = wt
carries an induced current I, and has self-inductance L.
The SC ring material is characterized by the magnetic
field penetration depth A(r) and the Ginzburg-Landau
coherence length £(7) = &o/v1 — 72, with 7 = T /Tc.
In a levitation state, the height of the magnet above the
SC loop is A > 0 and the SC current / > 0, as depicted.
In a suspension state, # < 0 and I < 0.

The height 4 is determined self-consistently by mini-
mizing the total free energy of the particle-SC ring system
subject to fluxoid quantization and mechanical equilibrium
constraints. Since the magnetic field at the SC ring is not a
controllable external variable, the Helmholtz free energy F
is the appropriate functional to be minimized. The differ-
ence between the SC state and the normal state free energy
is

AF = A(T) [ { N+ iNz + —[1¢ + —(§VN)2]’

1
+ ol + 5L12 + Wh, e
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where A(7) = uoV,H?2(7), with V the volume of the SC
ring, and H, is the thermodynamic critical magnetic field.
The contributions to AF are gravitational potential Wh;
magnetic field energy ¢,7 + 0.5LI%, with ¢, the “applied”
magnetic flux in the SC ring due to My; in the integrand, the
normalized condensation energy density —N + 0.5N? plus
the kinetic energy density £2|p#|?, where N = |2, with
= V/ Wk = \/].V_exp(ie) the normalized pair wave
function, p = —iV + (27 /¢o)A, with A the magnetic
vector potential, and ¢ = h/(2]e]) the fluxoid quantum.
The normalized quantum current density is defined by

Jy = éRe(y"py) = NQ, 2)

where Q = £[VO + (27 /¢o)A] is the normalized super-
fluid velocity. A contour integral of Q around the SC ring
gives the fluxoid quantization constraint

far-0 =20, L. O

—1

FIG. 1. A magnetic source is modeled by a uniformly magne-
tized sphere of radius a, and moment M = Myz. The SC ring
of radius b and wire cross section sqo = wt carries an induced
current /. The levitation height is A.
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The phase winding number »n is zero or integer. The
gravitational force and the interaction with the SC ring
produce a net force on the magnet given by

F = MO/ dv j(pH. — 2H,) — W, 4)

where j is the SC current density, and H. and H, are the
components of the field due to the magnet, evaluated at the
SC ring. For the uniformly magnetized sphere, depicted
in Fig. 1, the flux ¢, and field components are

ba = oMo 1
4 2b (1 + x2)3/2°
3M M, 2x2 — 1
H, = — 0 a s H, = 2 = ’
4wb3 (1 + x2)5/2 47b3 (1 + x2)5/2
)

with normalized height x = h/b. At equilibrium, not only
is the force F = 0, butalso dF,/3h = 0. The z component
of Eq. (4) is a mechanical constraint relating W, j, and
H,, and the derivatives of j and H, with respect to height
variation. Since the net horizontal force component must
also be zero, the magnet must remain on the axis of
symmetry of the SC ring. Stability is discussed below.
For the moment assume the magnet remains as depicted
in Fig. 1.

The wire cross section sy is assumed small enough
that the transverse variation of N and H, in the SC ring
are negligible. In this approximation, since the system
has cylindrical symmetry, the integrations in Egs. (1), (3),
and (4) are trivial. Minimizing AF(N, Q,1, h) subject to
constraints (3) and (4) with F = 0, and dF,/dh = 0, leads
to the relations

N=1-0%, (6)
J(1 — Q)= NoQ,

. S D
o= (fe ) (e 5 )]

where L' = L/uob = In(16b/w) — 1.75. The normalized
SC current density is J = AI//2soH.. The variables N,
Q, and J in Eq. (7) are interpreted as mean values taken
over the volume of the SC ring. Equation (6) is the
usual relation between the superfluid velocity and the pair
density for a uniform ring. However, Eq. (7) shows that
J is not equal to the quantum mechanical expression J, =
NQ. Neglecting ) is equivalent to neglecting the mutual
inductance term ¢,/ in Eq. (1). Combining Egs. (6) and
(7) gives the equilibrium height function y, which is the
main result of this paper. It is

y(x) = Jic(l - Q)+ cos[3<3€fﬂ =0, ®)

with J. = 2/+4/27 the normalized critical current density
of the ring. The variables Q and J are given by the
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constraint equations

_ & WL'
0= bao (qﬁa + i, + n¢o), C)]
. _§3K2WL
J= dosob H, (10)

with k = A/&. The function y in Eq. (8), with constraints
(9) and (10), is a self-consistent equation for the normal-
ized height x(7,n) = h(7,n)/b of the levitated (or sus-
pended) magnet. The function y(x) has a root xy that
corresponds to the minimum value of AF. For a given set
of parameters, there is a minimum and a maximum value
of n for which the root xy exists, i.€., nymin = 7 = Npax.
For each n, as the temperature 7 increases, xy disap-
pears at T = 7oy = 7.. Equation (8) also has a discrete
set of temperature independent levitation and suspension
solutions arising from exact flux quantization Q = 0,
with ) = 1 [8]. Equation (8) is valid .for any constant
magnetic source with cylindrical or spherical symmetry.
Levitation of one SC ring by another, involving two order
parameters, is more complicated [9].

All figures are based on the following data: The mag-
netic particle is a YIG sphere of radius a = 0.5 um, mag-
netic moment My = 1.05 X 107'* Am?, and weight W =
2.67 X 107!'* N. The SC ring has radius » = 4.0 wm and
wire cross section w = 0.5 um, ¢t = 0.02 um. The SC
is Al with A = 0.05 um and &, = 1.6 um. (A circular
wire cross section of the same value gives very similar
results, but the uncertainty in Q is reduced [8].)

Figure 2 shows the normalized, equilibrium levitation
height xo(7,n) plotted as a function of the normalized
temperature 7 for the complete set npin = —5 10 npax = 3.
The quantization of x, is due to the integer n in the flux
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FIG. 2. The complete set of equilibrium levitation states x, =

h(7,n)/b is plotted as a function of 7 = T /T for all values of
the flux quantum number » in the range ny;, = —5t0 npax = 3
for which levitation solutions exist. Each curve has a distinct
cutoff temperature.
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constraint, Eq. (9), and it is a function of temperature via
the coherence length £(7). The temperature dependence
of k is neglected. Figure 3 shows the complete set of
suspension levels. Analysis of the horizontal force in
Eq. (4) shows that the magnet is self-centering for x <
—1/4/2 and 0 < x < 1/4/2. Only the lowest levitation
level in Fig. 2 is horizontally stable, whereas all of the
suspension levels in Fig. 3 are stable. Figure 4 shows the
normalized free energy E = AF/A plotted as a function
of x for the suspension levels at 7 = 0.5. The value of x
at the minimum values of E corresponds to the equilibrium
heights x((0.5,#) in Fig. 3. It is seen that for each n there
is a local “potential well.” If the magnetic particle is
displaced to a point where the levels cross, it is expected
that it would fall to a lower energy state. Figure 5 shows
E plotted as a function of x for the four highest levitation
levels at 7 = 0. The shallow potential well of the n = 3
curve is typical of all curves as 7 approaches 7.y, at
which point the minimum vanishes. Since the energy for
n = 0 crosses very close to the minimum of the higher
levels, they are unstable with respect to height variation.
The energy versus x plots for the lower levitation levels
exhibit a structure similar to that shown in Fig. 4, which
exhibits height variation stability. For any 7, as the
quantum number s increases both the free energy and
the levitation heights increase, but the SC pair density N
decreases. Thus energy is extracted from the condensate
to lift the sphere.

Replacing the aluminum SC ring with a lead ring of
the same dimensions gives interesting comparative results.
Lead has Ao = 0.04 um and &;, = 0.09 um. The radius
of the Pb ring is 44.4 times the zero temperature coher-
ence length. The result is 86 closely spaced levitation
levels with zero temperature range 0.6 =< xo =< 7.4. The
change from Al to Pb manifests an effective transition
from a mesoscopic to a macroscopic system.
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FIG. 3. The complete set of stable, equilibrium suspension
states xo = h(r,n)/b is plotted as a function of 7.
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FIG. 4. The normalized total energy E of the suspension
states is plotted as a function of normalized height 2/b at
temperature 7/T¢ = 0.5. The values of h/b at the energy
minima correspond to the equilibrium values in Fig. 3. The
relative position, the level crossings, indicates stability of the
states with respect to height variation.

Can one experimentally observe the quantization effects
predicted here? The suspension states and the lower lying
levitation states are stable and should be observable in the
mesoscopic domain. Recent advances in the development
of optical “tweezers” using laser microbeams to trap and
manipulate micron-sized biological particles may make it
possible to position a magnetic microparticle [10]. To
observe non-self-centering states, the magnet must be
externally constrained to the symmetry axis of the SC
ring. If the suggested levitation experiment is performed,
the author believes it would be the first direct observation
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FIG. 5. The plot shows the energy of the highest four

levitation states at 7/Tc = 0. The position of the level

crossings indicates instability.
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of a quantized relative spatial coordinate of a corpuscular
object.

An extensive critical analysis of this work by H.J.
Fink, and the useful comments by P. Erdos, T. Larson,
and G.T. Zimanyi are greatly appreciated.
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FIG. 1. A magnetic source is modeled by a uniformly magne-
tized sphere of radius a4, and moment M = Myz. The SC ring
of radius b and wire cross section s, = wr carries an induced
current /. The levitation height is h.



