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We introduce a model of the superconducting transition in a bad metal, and show that quantum
and classical phase fluctuations prevent long-range order unless the resistivity p(7) falls below a

critical value.

Application of these ideas to high temperature superconductors accounts for the

variation of p(T,) in radiation-damaged films; gives an upper bound on 7. « n,, where n, is the
zero-temperature superfluid density; and shows that, with screening, phase fluctuations give a linear

temperature dependence of n, at low temperatures.

PACS numbers: 74.20.Mn

A number of the most interesting new materials dis-
covered in the past few decades are “bad metals” in the
sense that their resistance has a metallic (increasing) tem-
perature dependence but, at sufficiently high temperatures,
the mean free path / of a quasiparticle would be less than
its de Broglie wavelength Ar = 27 /k;, were Boltzmann
transport theory to apply. Among these materials are or-
ganic conductors, alkali-doped Cyg,, and high temperature
superconductors. In this paper we show that, in a suffi-
ciently bad metal, classical and quantum fluctuations of the
phase of the superconducting order parameter depress the
transition temperature 7. well below its mean-field value.
Specifically, the conductivity at 7. must exceed a material-
dependent critical value o, otherwise number fluctuations
are suppressed by the long-range Coulomb interaction, and
long-range phase order cannot be established.

It is often assumed that the quasiparticle decay rate
and the transport scattering rate 1/7 in a metal must
be small compared to the quasiparticle energy kpT, as
required by Fermi liquid theory. However, perfectly
sensible metals, such as lead, fail to satisfy this condition
at room temperature and yet their transport phenomena
are well understood in terms of Boltzmann theory [1]. In
fact, the concept of a propagating quasiparticle apparently
does not break down entirely [2] until its mean free
path is shorter than its de Broglie wavelength: [ < Ag.
In normal metals with strong electron-phonon coupling,
a symptom of this breakdown is resistivity saturation;
for the A15’s, for example, the saturation value of the
resistivity [1,3] (p = 150 wQ cm) corresponds to [ = Ar.
(Thus the A15’s are not “bad metals” as we have defined
the term [3].)

Bad metals fail to exhibit resistivity saturation.—For
example, in La;gsSrp;5CuO4—s, the resistivity in the
a-b plane is a linearly increasing function of tempera-
ture from 7. up to 900 K, where its magnitude is about
0.7 mQ) cm; according to Boltzmann transport theory this
implies //Ar = 0.4 at 900 K with no sign of saturation.
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The failure of bad metals to exhibit resistivity satura-
tion strongly suggests that any theory based on conven-
tional quasiparticles with more or less well-defined crystal
momenta suffering occasional scattering events does not
apply. Since there is no crossover in the temperature de-
pendence of the resistivity as the temperature is lowered,
this conclusion applies by continuity even at lower tem-
peratures where the putative mean free path deduced from
the measured values of the resistivity would not, of itself,
rule out the possibility of quasiparticle transport. In other
words, a bad metal behaves as if it is a quasiparticle in-
sulator which is rendered metallic by collective fluctua-
tions [4].

Given that the normal state of a bad metal is anoma-
lous, the physics of the superconducting transition must be
reconsidered. In the BCS-Eliashberg mean-field theory,
which is an extremely good approximation for conven-
tional superconductors, electron pairing and long-range
phase coherence occur at the same temperature TMF,
However, in bad metals, especially the high temperature
superconductors, the value of the bare superfluid density
ngo is quite low at zero temperature [5], so the classi-
cal phase ordering temperature, which is proportional to
ngo/m*, can be substantially lower than TMF [6]. More-
over, the phase ordering temperature is depressed fur-
ther because the poorly screened Coulomb interactions
suppress the local charge density fluctuations which are
associated with phase order. Together, these effects de-
termine the superconducting transition temperature 7. in
a bad metal. They also imply that local superconducting
fluctuations are important for a much larger range of tem-
peratures above T, than in good metals.

In order to develop the theory, we consider the effective
action obtained by formally integrating out all the “micro-
scopic” degrees of freedom other than the phase 6(r, ) of
the local superconducting order parameter. The result is
a form of nonlinear sigma model, which must be regular-
ized by introducing a short-distance cutoff. Consequently
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we define the phase variable on a cubic (or, later, tetrag-
onal) lattice of regions of size a labeled by positions R;.
The phase and the total electron number in a region are
conjugate variables, such that [7]

FOR;,1) = 2¢hp(R,,1), )]

where ¢ is the local electrochemical potential. Then
the contribution of the screened Coulomb interaction to
the effective action, which is given by the integral of
E-D /87, with

E,(R;)) = =V, ¢p(R)) = [d(R;) — ¢(R; + a&,)]/a, (2)
and b = x,y, z, can be expressed as a Fourier transform:

ha

- ?gﬂ'ez ; A(ka)e(k’ wn)wilek,a)”'z- (3)
Here B = 1/kgT, w, = 27n/hB are the Matsubara fre-
quencies, A(ka) =23, [1 — cos(kya)], and € is the
dielectric function. (The tilde on € and other functions in-
dicates analytic continuation to imaginary frequency.) e
is related to the conductivity of the microscopic degrees
of freedom in the usual manner:

ek,w)=€x +4mok,w)/iw. 4)

The second contribution to the effective action de-
scribes classical phase ordering:

1 e /! /
Sy B ];) drdr (%){V(T 7’)
X [1 = cos(0(R;, 7) — 6R;, 7N. (5)
The Fourier transform of "V (7) will be denoted by V(w,),
and V(w, = 0) = h’nya/4m*, where m* is the effective
mass of an electron. It is remarkable that the details of
the normal state conductivity completely determine the
effective action [5]. For S,, this reflects the quantum-
mechanical nature of the problem, in which dynamics and
thermodynamics are intimately linked. The frequency-
dependent conductivity is the response function of all the
degrees of freedom which have been integrated out, and
is the measure of the efficiency with which the Coulomb
potential is screened. As we shall see, the physics is
determined by o (k, w) over a wide range of frequencies.

In the classical limit, o(w) — oo, Sy describes phase
ordering in the universality class of the X-Y model, with
a critical temperature Ty = AV (0)/kg, where A is a
dimensionless number of order 1, which depends on the
details of the short-distance physics. For the X-Y model
on a tetragonal lattice, A varies from 0.9 in the extreme
two-dimensional limit to 2.2 for cubic symmetry [6].

In order to complete the specification of the model
we set the area of the unit cell a?> = 7w¢2 where ¢
is the coherence length (so that there is one-half flux
quantum per plaquette at the upper critical field), in
recognition of the fact that variations of the amplitude
of the order parameter are important at shorter lengths.
For granular materials, the physical & typically is equal
to the size of the grains. In general, this choice of a
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also ensures that the energy gap A of the superconductor
exceeds the level spacing in the microscopic regions,
i.e., a® > A/N(Er), where N(Ef) is the density of states
at the Fermi level. Quasi-two-dimensional materials,
such as the oxide superconductors, consist of weakly
coupled planes, and the phase variables are defined
on a tetragonal (or orthorhombic) lattice. The in-plane
lattice constant does not enter any of our results, so
the only relevant short-distance cutoff is the larger of
the average spacing between the layers a. and /7 &,
where £, is the coherence perpendicular to the layers.
Finally, since we are interested in long wavelength
physics, we will largely ignore the k dependence of the
conductivity. Whenever this is not a good approximation
(for example, in relatively good metals) there can be
significant departures from the present results.

In a sufficiently bad metal, the phase ordering tempera-
ture is depressed substantially below TMF where the
amplitude of the order parameter is established, and hence
the temperature dependence of V(w,) may be ignored.
Here, we shall usually assume that V(w,) is a constant
V, for |w,| less than a cutoff frequency ).

In a good metal, 470 = w,z,/iw and hence, continuing
to imaginary frequency, & = €. + a)lz)/w,% at all but the
lowest frequencies. With this expression for &, S, in
Eq. (3) becomes the effective action for the plasmon.
Note that, in contrast to Ref. [8], V(w,) vanishes at
high frequency, and does not contribute to the plasma
frequency w,, unless ) is very large. Conversely, the
plasmon has very little effect on the superconducting
transition.

Phase fluctuations in a bad metal. —The action in
Egs. (3) and (5) is formally similar to a model of an array
of resistively shunted Josephson junctions considered
previously [9,10]. Thus, while its physical origin is
quite different, the model may be analyzed by using
the same methods, with much the same results. Details
will be presented in a forthcoming paper [11]. The term
proportional to ¢ on the right side of Eq. (4) is dominant
at low frequencies, and therefore .. may be dropped. It
is easy to see that S, is the larger contribution to the
action (S,/Sy ~ ho/V,). Therefore it is straightforward
to generalize the procedure of Refs. [9] and [10] to derive
energy shell renormalization group equations to first order
in V, taking ) as the upper cutoff, since higher-frequency
modes produce a trivial renormalization of V,,:

dv/dL =V{l — og/5(Q)}, (6)

where V. = V/iQ,dL = dQ/Q,and o0y = F(2¢)*/ha.
Here F is a constant of order unity, which depends on
the short-distance details of the screening [11]; for a
k independent o and a cubic lattice F = %

Zero temperature and constant conductivity.—For sim-
plicity we first consider & to be frequency independent.
In that case, the general solution of the full renormal-

ization group equation for V must be of the form V =
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f(Q/w"), where hw™ is the physical energy scale. For
the first-order equation (6)

flx) = (x)tt-ale, (7
0" = Q,(V,/hQ,)* @D, (8)

where the subscript o refers to the bare value of a
parameter, and &« = & /0. Equation (8) gives an exact
expression for the energy scale for small V,. According
to Eq. (7),if @ < 1,V — 0as Q — 0. On the other hand,
if @ > 1, V increases upon rescaling and the approximate
renormalization group equation is insufficient to solve
the problem. However, since V is proportional to the
superfluid density, it is clear on physical grounds that
the ground state has long-range phase order if « > |,
and in that case /w™ is the characteristic energy scale
of the superconducting state. In particular, in the self-
consistent phonon approximation [9], the renormalized
value of V, at T = 0 is given by Qa/a F)V* Vhiw™;
thus n,/ngo = QaV,/a FhQ,)"/@ D and n; — ny as
a — O,

Finite temperature and constant conductivity.—The
scaling must stop here when 7#AQ ~ kgT. For a <
1, Eq. (7) demonstrates that, at this point, V < kgT,
i.e., the system is thermally disordered, as expected,
since the ground state is nonsuperconducting. For a >
1, the superconducting transition temperature must be
proportional to the characteristic energy scale of the
renormalization group theory: kg7, = A'fiw”, where A’ is
universal. From Eq. (8) iw™ — V,, in the classical limit
Thus A’ is equal to the constant A introduced
below Eq. (5). The expression (8) for ™ may be inverted
to obtain o (T.) = o, the conductivity at T.:

In[ARQY, /kpT.]
¢ = 09 . (9)
In[AV, /kgT.]
In the limit 7. — 0, this reduces to o, = oy, a constant
[defined below Eq. (6)] which does not depend strongly
on material properties. When the transition temperature
is finite, o is always larger than oy.

The above general considerations must be modified in
two ways for application to high temperature supercon-
ductors. First, the conductivity is strongly frequency de-
pendent, and, in particular, (@ = 0) typically is much
larger than (w) for a wide range of frequencies. Sec-
ond, the materials are quasi-two-dimensional so that, al-
though the Coulomb interaction is still three dimensional,
the conductivity and the bare superfluid density are highly
anisotropic, with values in the a-b plane, o) and V|,
which are much larger than their values in the ¢ direc-
tion, o, and V|, respectively.

It is a simple matter to generalize the renormaliza-
tion group procedure to the anisotropic case. V) satisfies
Eq. (6) with &(Q) replaced by &y(€2) and F by another
[11] nonuniversal constant which is equal to % for large
anisotropy and k independent screening. The equation for
V| shows that, under renormalization, V, /V} always de-

a — 0O,

g,

creases, and that consequently it will always be the growth
of V) which signals the approach to the superconducting
transition [11]. Even with a frequency-dependent o, it is
straightforward to integrate the equation for V) as above.
The result is the same as before provided that ¢ is re-
placed by &(0), and Q, is changed to )/, which satisfies
the inequality )/ > €, if &(w) is a decreasing function
of w. Thus the critical value of o4, is increased, reflecting
the fact that the appropriately frequency-averaged conduc-
tivity is smaller than o4.. An explicit expression for 3/,
is given in Ref. [11].

The idea that the superconducting transition is con-
trolled by the value of the conductivity at 7, correctly
predicts many trends in the transition temperature of high
temperature superconductors. It has been considered as an
explanation of the variation of 7. upon purposely reduc-
ing the conductivity of YBa,Cu30O;_s by radiation dam-
age by Sun er al. [12]. As illustrated in Fig. 1, which
shows R, the resistance per square per copper oxide
plane, their data are well explained by our theory. The
solid line in the figure is obtained from Eq. (9) with
o./og replaced by Ro/Rn and Ry = 6(h/4e?) = 40 kQ,
Ty™ = AV, /kg = 100 K, and AAQ/ = 1, 200 K. Here,
Ry is determined by the resistivity of the films as 7. — 0,
while the assumed value of 73" is close to estimates ob-
tained from 47n, = m*[c/eA(T)]?, where A(T) is the in-
plane penetration depth at zero temperature [6]. It also
has been assumed that the radiation damage does not in-
duce large changes in ny. The fits are largely insensitive
to changes in the assumed value of €/ by factors of 2 or
3 so, for definiteness, we have set AR} =~ J, the antifer-
romagnetic exchange energy in YBa,Cu3;O7_5.
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FIG. 1. The solid line is the logarithm of the resistance in

ohms per square per CuO, plane vs T, as derived from Eq. (10)
for Ry, = 40 kQ, AV, = 100 K, and AAQ, = 1200 K. The
resistivity data for radiation-damaged films of YBa,Cu;O;_;
are from Ref. [12].
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It is clear from Eq. (9) that the classical phase ordering
temperature Ty = AV, is an upper bound on T., which
is significant whenever T3 < TMF. Since V, x n,, this
provides a new interpretation [6] of the empirical corre-
lation [13] between 7. and n,(0) in undamaged materials.
For underdoped materials, there is a considerable range
of temperatures between T, and TMF in which the exis-
tence of a well-developed amplitude of the order param-
eter should be observable as a pseudogap [6]. It also is
interesting to note that, according to Eq. (9), the reduction
of T. due to quantum phase fluctuations in pristine ma-
terials is about 6%, which is small but not insignificant.
[Typically [14] Ro(T§™) is about 1 k.]

Other implications of our model for high tempera-
ture superconductors include the existence of a substan-
tial range of temperatures in the neighborhood of T.
in which critical phase fluctuations dominate the low
frequency electromagnetic response, and a low temper-
ature regime in which ny(7) will have an anomalous
temperature dependence as a result of phase fluctuations:
ng(T)/ns(0) =1 — aFkgT/2V,(a — 1), to first order in
T [11]. Here, it is assumed that the Coulomb interac-
tion is screened by the finite residual far IR conductiv-
ity observed in YBa,Cu3;O7-5 [15]. If we use o(w) =
500 (€ cm)™!' (which is roughly consistent with experi-
ment [15]) together with Ry, = 40 kQ (F = é), as de-
duced from the data of Fig. 1, the linear temperature de-
pendence of the superfluid density agrees quantitatively
with the observation of Hardy et al. [16] in YBa,Cu3;0;_5
crystals [17].

In addition to its consequences for high temperature
superconductors, a minor modification of our approach
explains the fact that it is the value of the normal
state resistivity that determines whether dirty metallic
films ultimately become superconducting or not, and
that the critical value of the resistivity, within a factor
of 2, is independent not only of material, but also of
morphology [18]. This is remarkable, given the other
striking differences in the low temperature behavior of
granular and homogeneous films. In our approach [11]
both of these observations are explained by the fact that
most of the screening of the Coulomb interactions occurs
at frequencies larger than A,, and so is not very sensitive
to low energy details. One prediction of the theory is
that a normal metal overlayer, separated from a disordered
metallic film by an oxide layer thick enough to suppress
tunneling, can still screen the Coulomb interaction and
thus enhance 7. This suggests that a strategy for making
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new high temperature superconductors is to fabricate
structures consisting of alternating layers of a bad metal
with strong pairing to induce local superconductivity, and
a good metal to screen the Coulomb interaction.
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