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Center of Mass and Relative Motion in Time Dependent Density Functional Theory

G. Vignale
Institute of Theoretical Physics and Department of Physics, University of California, Santa Barbara, California 93106-4030

and Department of Physics, University of Missouri, Columbia, Missouri 65211
(Received 13 December 1994)

It is shown that the theorem asserting separability of the center of mass motion for a system
of interacting particles in a harmonic external potential is satisfied in the time dependent density
functional theory, provided that the exchange-correlation potential satisfies a simple symmetry under
transformation to an accelerated frame of reference. Examples of approximations for the exchange-
correlation potential which satisfy or violate this symmetry are given.
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Time dependent density functional theory (TDFT)
[1—3] is a very useful tool for the study of the dynamic
behavior of correlated electronic systems under the inhu-
ence of external probes. This formalism maps the time
dependent many-body problem onto a set of one-electron,
self-consistent Hartree-like equations, which include, in
addition to the Hartree potential, a local time dependent
exchange-correlation potential. The range of problems
to which TDFT is successfully applied is expanding
[3,4]: it includes the calculation of atomic photoabsorp-
tion cross sections [5], the dynamics of electrons in
quantum wells under very strong electromagnetic fields
[6], and the calculation of excitation energies in atoms,
molecules, and solids [7]. Crucial to the success of the
theory is the availability of simple approximations for
the exchange-correlation potential V„[n; r, t j, which is an
ordinary function of r and t, but a complicated, nonlocal
functional of the density distribution n(ri, t') for times t'
earlier than t. Examples of approximations for V„, are
the adiabatic time dependent local density approximation
(TDLDA) of Zangwill and Soven [5], and the local linear
response approximation, with a frequency-dependent
exchange-correlation kernel, of Gross and Kohn [2]. In
constructing such approximations, it is desirable to satisfy
as many of the known exact properties of the functional
as possible. One example of rigorous constraints on ap-
proximate functionals is provided by the scaling relations
for the static density functional theory [8]. Another type
of constraint, which is peculiar to the time dependent
theory, has been recently pointed out by Dobson [9]. In
a system of interacting electrons confined by an external
harmonic potential V), (r) = (2)r K r the dynamics of
the center of mass is completely decoupled from that of
the internal degrees of freedom [10,11]. When a uniform
time dependent electric field E(t) is applied to such a
system, the density distribution is rigidly transported,
according to the equation

n(r, t) = no(r RcM(t)) (I)
where no(r ) is the static electronic density in the absence of
the field, and RcM(t) is the solution of the classical equation
of motion

d RcM(t)
m = —eE(t) —K . RcM(t)dt2

e dRcM(t)
X B.

c dt

This property of the exact density will be referred to as
the "harmonic potential theorem" (HPT) [9]. Dobson's
discovery [9] is that the HPT is not automatically satisfied
in approximate versions of TDFT. For example, the
Zangwill-Soven [5] adiabatic TDLDA does satisfy the
HPT, but he Gross-Kohn [2] linearized response theory,
which includes a frequency dependence in the exchange-
correlation kernel, does not.

In this Letter, we demonstrate that the validity of the
HPT in TDFT is guaranteed if the exchange-correlation
potential satisfies a simple symmetry which is required in
the exact theory. The approximations that Dobson finds
to satisfy HPT are the ones that satisfy this symmetry, and
those that violate the HPT are the ones that violate this
symmetry. Furthermore, we present a general procedure
whereby the correct symmetry of the exchange-correlation
potential as a functional of density can be built into an
approximation.

We begin by stating a few exact properties of the time
dependent Schrodinger equation

(3)

where
N 2 20=/ p + —a(r) + —g (4)

is the familiar Hamiltonian for N interacting electrons
in the presence of a uniform magnetic field 8 described
by the vector potential A(r) = B && r/2, and V(t) =

, V(r;, t) is the time dependent potential. The time
dependent density n(r, t) is defined as the expectation
value (P(t)~n(r)~P(t)) of the density operator n(r) =

, 6(r —r;).
Let us look at the system from the point of view of

an accelerated observer whose position, relative to the
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original reference frame, is given by the vector x(t) I.t is
assumed that the accelerated observer uses Cartesian axes
that remain parallel to the axes of the original reference
frame and that x(to) = dx(t)/dt(t = to) = 0, so that both
the density and the wave function seen by the accelerated
observer coincide with those seen by the inertial observer
at an "initial" time tp. The accelerated observer describes
the time evolution of the wave function in terms of the
Schrodinger equation (3), in which the time dependent
potential V(i, t) is replaced by

V'(i, t) =V(r + x(t), t) + ma(t)

p i; + (e/c) [v(t) x B] . g r; + f(t), (5)

x exp[ip; . x(t)]. (7)

The mathematical proof of the key equations (5) and (6)
follows from the application of U(t) to the time dependent
Schrodinger equation. However, the correctness of these
equations is physically evident. Equation (5) says that the
potential seen by the accelerated observer is the original
potential expressed in terms of the new coordinate, plus
a uniform inertial force —ma(t), and a uniform electric
field u x B/c that arises from the transformation of the
magnetic field. Equation (7) says that the new wave
function is obtained from the former by translating the
coordinate of each electron by x(t) and the momentum
of each electron by mv(t). When the magnetic field is
present an additional translation of the momentum by

eB x x(t)/2c —is required. Notice that, for a system
in a static harmonic potential, an applied uniform time
dependent electric field can be eliminated by transforming
to an accelerated reference frame moving according to
Eq. (2). This observation proves the HPT.

Let us now turn our attention to time dependent
density functional theory. The basic theorem here is the
Runge-Gross theorem, according to which, for any time
dependent density n(r, t) defined within an appropriate
class of functions in the interval tp ( t ( tl, and evolving
from a fixed initial state P(to), there exists an essentially
unique time dependent potential V(i, t), such that the
solution of the time dependent Schrodinger equation (3)
yields n(i, t) as the expectation value of the density

where a(t) and u(t) are the second and first derivatives
of x(t) with respect to time, and f (t) = N( mv (t)/2—+
(e/2c) [B x x(t)] v(t)). The wave function p' in the
accelerated reference frame is related to the wave function

P in the original frame by the transformation

IA'(t)) = U(t)lk(t)), (6)
where the unitary operator U(t) = P;, U;(t) is defined

by

U;(t) = eep —ii; . mi)t) ——8 && x(t))2c

operator. The expression "essentially unique" refers to the
possibility of adding to V(i, t) an arbitrary function c(t)
of time, which causes the wave function to be multiplied
by a phase factor exp[i f c(t) dt] without affecting the
density. The "appropriate class" of densities includes all
the densities for which the potential V(i, t) exists, and is
Taylor expandable, with finite convergence radius, in a
neighborhood of tp. Under the assumption that at time
tp the system is in the ground state —an assumption that
we make in the rest of this paper —the Runge-Gross
theorem establishes the existence of an essentially unique
mapping from time dependent densities to time dependent
potentials and wave functions.

The exchange-correlation potential is constructed as
follows. First, one defines the action functional [I]

A[n] = tl

(P(t) It
——0

I y(t)) dt,

A[n'] = A[n] + N ma(t) RcM(t) + —[v(t) x B]

mv2(t)
RcM(t) +

2

where

[B x x(t)] u(t) dt, (12)2c

1
RcM(t) =

N
in(r, t) di (13)

is the coordinate of the center of mass of the density
distribution. Exactly the same transformation applies to

where IP(t)) is the wave function that corresponds to
n(r, t) according to the Runge-Gross theorem. The non-
interacting action functional is similarly constructed

A, [n] = (y, (t)lt ——Tly. (t)) dt,
0

where P,. is the wave function corresponding to the
density n(i, t) in a noninteracting system, and T is the
kinetic energy operator. Then, following Runge and
Gross, one defines the exchange-correlation part of the
action functional via the equation

A[n] —= A, [n] + AH[n] + A„[n], (10)
where the Hartree part of the functional is

e~ "',n(i, t)n(r', t)
AH[n] = —— dt dr dr'

~0 r —r'

Finally, the exchange-correlation potential V„[n; r, t] is
defined as the first functional derivative of the action
V„[n; r, t] —= BA„,[n]/6 n(i, t).

Let us now consider the action functional in the
accelerated reference frame. The density seen by the
accelerated observer is n'(i, t) = n(i + x(t), t) Using.
Eqs. (5) and (6), it is easy to see that the transformed
action is
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the noninteracting action functional A, [n] . Since the
Hartree term in the action is manifestly invariant under
the transformation n n', we conclude, comparing the
transformation equations for A and As, that A„ is invariant
under this transformation:

A„,[n'] = A„,[n].
This is the most important result in this paper. The

transformation law for the exchange correlation potential
is derived in the following way. We consider the differ-
ence between the xc action calculated for two neighboring
densities n and n + 6n.

cally satisfies the harmonic potential theorem. We suppose
that for t ~ to the density of the N interacting electron sys-
tem is described by the static Kohn-Sham equation with a
time independent external harmonic potential VI, (r), and a
static Hartree potential VH (no, i) and exchange-correlation
potential V„[no, i]. no(i) is the static ground-state den-
sity, given by the sum of the square amplitudes of N single
particle orbitals @;(i,t) = @;(i)exp[ —ie;t], with e s the
N lowest eigenvalues of the static Kohn-Sham equation.
These orbitals satisfy the equation

A„,[n + Bn] —A„,[n] = dt' di V„[n; r', t']

x Bn(r', t'), (15)

i ——T —
Vh (i) —VH [no , r] —. V„[no, r]

Bt

x p;(i, t) = 0. (18)

which follows from the definition of U„as a first
functional derivative of A„with respect to the density.
We can write the same relation for the transformed
densities n' and n' + Bn', and, using Eq. (14), we easily
establish the transformation

V„,[n', i, t] = V„,[n; i + x(t), t]. (16)
Another interesting property of U„ that follows directly
from Eq. (14) is

The system is now perturbed by a uniform time dependent
electric field E(t). Our task is to show that n(i, t) =
no(r —RcM(t)), where RcM(t) is the solution of the
equation of motion (2), is a self-consistent solution of the
time dependent Kohn-sham equation in the presence of
the driving electric field:

i ——T —Vh (i) —VH [n; i, t] —V„[n; i, t]
t

V V„fn; i, t]n(r, t) di = 0,

for any density. This is nothing but the statement that
the exact exchange-correlation potential (as well as the
Hartree potential) does not exert a net force on the system,
in compliance with the requirement of Newton's third law
of motion.

We now show that an exchange-correlation potential
that correctly transforms according to Eq. (16) automati-

eE(t) —i @, (i, t) = 0. (19)

To prove this fact, we observe that Eq. (19) can be
generated starting from Eq. (18), simply by applying to
the latter a transformation to an accelerated frame of
reference with x(t) = —RcM(t). Starting from Eq. (6),
it is easy to prove that the transformed wave functions

@,'(r, t) = UP;(r, t) satisfy the equation

i ——T —Vo(i —RcM(t)) —VH[no', r —RcM(t)l —V„[no' i RcM(t)] + macM(t) i + [vcM(t) x B] r
C

+ ——[B x RcM(t)] vcM(t) p,'(r, t) = 0. (20)
mvcM(t)

2 2c

Now, we substitute the harmonic potential form for

Vh r RCM Vh(r) RCM

+ 2 RcM ' K . RcM ~ (21)
and we make use of the symmetry of the Hartree and
exchange-correlation potentials V„[no, r —RcM(t)] =
V„[n; r] Using t. he equation of motion (2) to eliminate
terms that depend on RcM(t) we see that Eq. (20) is
essentially equivalent to the Kohn-Sham equation (19)
in the presence of the driving field. The only difference
is a time dependent additive term in the potential which
can be eliminated by further multiplying each wave
function by the phase factor exp[iS(t)], where S(t) is
the classical action for the motion of the center of mass.

A„[n(r, t)] =— dt di e„,(n(i, t)), (22)

Since the orbitals @; = @,'exp[iS(t)] yield the density
n = no(r —RcM(t)) and satisfy the time dependent
Kohn-Sham equation, in the presence of the driving
field, with Hartree and exchange-correlation potentials
evaluated at that same density n, we conclude that they
are the self-consistent solution of the driven Kohn-Sham
equation. Any approximation for U„, that satisfies
Eq. (16) will automatically satisfy the HPT.

Consider the adiabatic TDLDA [5]. The action func-
tional in this approximation has the form



VOLUME 74, NUMBER 16 PH YS ICAL REVIEW LETTERS 17 ApRIL 1995

where e„(n) is the exchange-correlation energy density of
the uniform electron gas of density n. This expression
is manifestly invariant under the transformation n ~ n'

since the latter amounts to a simple change of variable
in the space part of the integral. Therefore, the HPT is
satisfied.

On the other hand, consider the linear response theory
of Gross and Kohn [2] for V„. It has the form

isfies the HPT. We write the relative density as
n„,~(r, t) = np(r) + Bn„,~(r, t), where np(r) coincides
with the absolute initial density, because the center of
mass is initially at the origin of the coordinates. The
correction 6n„,I vanishes in the case of uniformly driven
harmonically confined system, but it need not vanish in
more general cases. The exchange-correlation potential
is approximated as

V„[n; r, t] =p,„,(np(r)) V„[n„,), r, t] =p, „(np(r))

+ f„,[np(r), t —t']An(r, t') dt', (23)

where it is assumed that the density n(r, t) = np(r) +
Bn(r, t) deviates only slightly from the static equilibrium
density. p,„,(np(r)) is the exchange-correlation part of the
chemical potential of the uniform electron gas of density
np. The kernel f„(np(r), t —t') [2] is a function of a
time difference, but only one position. In the case of har-
monically confined electrons we know from Eq. (1) that
6n(r, t) ——RcM (t) Vnp(r) if Rc M (t) is small. From
Eq. (16), we also know that V„[n; r, t] = V„[np, r—
RcM(t)] —V„,[np, r] —RcM(t) V'V„, [np, r], and V„,[np,
r] = p, „(np(r)). Substituting this into Eq. (23) we
see that the integral on the right-hand side must equal
VV„,[np, r] RcM(t). Because this must be true for an
arbitrary (small) driven motion of RcM(t), we see that
the only admissible time dependence of f„(np(r), t —t')
is proportional to a 6 function of t —t', i.e., the only
admissible approximation in this class must be local in
time as well as in space. Since the Gross-Kohn potential
is nonlocal in time, it violates Eq. (16) and therefore also
the harmonic potential theorem.

How can one make sure that approximate forms of the
exchange-correlation potential satisfy Eq. (16)? A general
way is to start from an action that depends only on the
"relative density" defined as

1(r t) = n(r + RcM(t) t) (24)

where RcM(t) is constructed from Eq. (13). By construc-
tion, n„] is invariant with respect to transformation to an
arbitrary accelerated frame of reference. Therefore, if the
action functional is written as a functional of the relative
density A„[n(r, t)] = A„,[n„,~(r, t)], it will automatically
satisfy the symmetry of Eq. (14). The exchange-
correlation potential will then be given by

V„[n; r, t] = V„,[nn, ~', r —RcM(t), t], (25)
where U„,[n„~, r, t] = BA„[n„~)/Bn„,~(r, t) As a fi. rst
application of this method we construct an approximate
exchange-correlation functional for small displace-
ments from equilibrium, which is frequency dependent
in the spirit of the Gross-Kohn treatment, but sat-

dt' f„,[np(r); t —t']An„(( r, t'), (26)

where f„[np, t —t'] is the Gross-Kohn exchange-
correlation kernel. RcM(t) itself must be determined
self-consistently from the knowledge of the full density,
according to Eq. (13).

We note, in closing, that all our resu1ts could be easily
generalized to the case of a uniform time dependent
magnetic field. The HPT generalizes to this case. The
only difference is the appearance of the additional electric
field (e/2c)dB(t)/dt X x(t) in Eq. (5).
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