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van Hove Singularity Induced L1~ Ordering in CuPt
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We describe an ordering mechanism that arises due to coupling between electronic states at van
Hove singularities. This novel mechanism, which naturally leads to ordered structures with small unit
cells, couples states near the Fermi energy which are localized at high-symmetry points in k space, in
contrast to the conventional mechanism which relies on large parallel sheets of Fermi surface. Using
first-principles calculations of the electronic structure of ordered and disordered alloys, we show that
this mechanism drives the unusual short- and long-range order found in fcc CuPt.

PACS numbers: 71.20.Cf, 64.60.Cn, 75.40.Cx

CuPt is the only metallic alloy which forms in the Ll l,

structure [1]. This structure consists of alternating fcc
(1, 1, 1) layers of Cu and Pt, in contrast with the more com-
mon Llo structure which has alternating (1,0, 0) planes of
atoms. In this Letter, we describe the novel origin for the
structural ordering observed in CuPt. We show that the
L1 ~ structure is stabilized by a Peierls-like mechanism aris-
ing from the hybridization between van Hove singularities
at the high-symmetry X and L points in the fcc Brillouin
zone. This mechanism naturally leads to ordered struc-
tures with small unit cells, commensurate with the under-
lying fcc lattice, and could also explain the stability of such
structures in other systems. In contrast, the more conven-
tional Fermi-surface-nesting mechanism typically leads to
long-period superstructures (LPS), which are observed in
Cu, Ag, and Au rich alloys [1]. Cu&, Pt, is particularly
interesting since by varying the Pt concentration one can
observe both the L1 l ordering associated with the proposed
mechanism (c = 0.5) and the LPS associated with Fermi-
surface nesting (c = 0.73).

We investigate the stability of the disordered solid
solution phase of CuPt by calculating the atomic short-
range order (ASRO) using a mean-field statistical
approach based on a first-principles description of the
finite-temperature, electronic grand potential of the disor-
dered alloy. This approach is based on standard Korringa-
Kohn-Rostoker coherent-potential-approximation [2—4]
(KKR-CPA) electronic-structure formalism. At high
temperatures, the calculated ASRO has spectral peaks

1 1 1

at the wave vector (2, 2, 2), indicative of the observed
low-temperature CuPt L 1 ~ structure [5], in agreement
with experiment [6]. It is a strength of this approach that
the electronic origin of this ASRO can be determined
unambiguously from these calculations. These results are
complemented by ordered (zero-temperature) calculations
comparing the total energies and densities of states of
the Llp and Lll structures. These calculations confirm
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the lower energy of the L1& structure, and support the
mechanism based on the coupling of high-symmetry
points suggested by the ASRO calculations.

For a binary A, B&, alloy, any chemical configuration
(whether ordered or disordered) can be described by a
set of site-occupation variables s;. Here g; is 1 (0) if
an A-type atom does (does not) occupy the ith site in
the lattice. The thermodynamic average of $;, (s;), is
then the average concentration (or probability) of an A
atom at that site, c;. At very high temperatures the al-
loy is (assumed to be) homogeneously disordered and,
as such, c; = c for all sites. By applying small, inho-
mogeneous "external" chemical potentials [6v;) to induce
changes in the site-occupational probabilities, tBc;), we
consider the linear response of the atomic pair correla-
tions which develop as the temperature is lowered. The
KKR-CPA approach is then appropriate for describing the
configurational average over the electronic degrees of
freedom for this reference state, and gives a good descrip-
tion of its electronic structure and energetics [3,4,7]. The
compositional correlations can then be investigated via
the fluctuation-dissipation theorem which connects these
responses to the atomic pair-correlation function, n;, =
Bc;/6 v1 = P((g;$1) —($;)(g&)), where P = (k~T)

In terms of concentration waves, the central result is
that the ASRO (or the Fourier transform of the atomic
pair-correlation function), which is measured by diffuse
scattering experiments, can be written formally [8—10] as

~(q) = pc(1 —c)
1 —pc(1 —c) [St i(q, c) —A, ]

with
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where + refers to a Fourier transform in the random state.
Because of the internally consistent use of the mean field
for both the electronic-configurational and thermodynamic
averaging, only "point" entropy is included in n(q). Sl ) (q)
provides direct information on the stability of the randomly
disordered alloy to concentration fluctuations at tempera-
ture T Th.e q dependence of u(q), or St2)(q), depends on
details of the random alloy's electronic structure, and, per-
haps, on details of the double-counting contributions. The
maxima of tt (q) describe the type of ordering (or chemical
correlations) in the alloy. In the above equations, AcpA

is the KKR-CPA electronic grand potential for an inho-
mogeneous configuration tc;). The Onsager cavity correc-
tion A,, , which is important for long-ranged interactions, is
temperature dependent but wave vector independent, and
maintains the spectral intensity over the Brillouin zone, i.e.,
n;; = Pc(1 —c) [9—13]. This sum rule is generally not
maintained in mean-field theories.

Except for being altered by Onsager corrections,
Eq. (1) is analogous to that of Gorsky, Bragg, and
Williams [14,15] (or the Krivoglaz-Clapp-Moss formula
[16]). However, it is more robust owing to the electronic
basis of the theory and its concentration dependence,
and, as such, it can give rise to much different behavior
than found historically for the Gorsky-Bragg-Williams
model [9,10]. Details of this first-principles theory of
ASRO were discussed originally by Gyorffy and Stocks
[8] and co-workers [12,17] for the case in which only
the electronic band energy is considered. More recently,
Staunton, Johnson, and Pinski [9,10] have discussed the
generalization to include all terms beyond band energy
(so-called "double-counting" terms) in the grand poten-
tial, as well as the details and importance of the Onsager
corrections to mean fields. Notably, there are self-energy
corrections [9] to S( )(q) and A, that are derived on an
internally consistent electronic basis, not just via the
simple integration.

In the ASRO calculations, all electronic terms are
included within the single constraint of a fixed Bravais
lattice [9] and all potentials are obtained self-consistently
from the scalar-relativistic KKR-CPA, using the local
approximation to density-functional theory [18]. For
simplicity, the experimental lattice constant of CuPt was
used. We note that in fully relativistic calculations the
magnitude of ASRO is reduced by at most 10% [19,20],
and, therefore, spin-orbit terms have only a small effect.

The importance of this first-principles concentration-
wave approach lies in the ability to pinpoint a specific
electronic origin of ASRO. This is especially useful
when the high-temperature state is a precursor of the
low-temperature ordered state, as is the case for CuPt.
Our calculated ASRO [19,20] for CuPt indicates an
instability to concentration fluctuations with a wave vector

1 i 1of (z, z, 2), consistent with the observed L1 ~ ordering [1].
In what follows, we isolate the fundamental electronic
features responsible for the observed ASRO and for

the chemical interactions, whether they be ultimately
represented in real or reciprocal space. (In real space, the
resulting first two neighbor interactions are large and have
the same sign, and are sufficient to give the Ll] ground
state in a next-neighbor Ising model [21].)

We find that the electron states near the Fermi energy,
eF, play the dominant role in determining the L1~ order-
ing tendency found from S(~&(q). In such a case, it is in-
structive to interpret (not calculate) S(2)(q) in terms of the
convolution of Bloch spectral functions A~(k; ~) as [8,12]

de de'', dkAB(k; e) AB(k + q; e'),,f(~) —f (~')

(2)

where f(e) is the Fermi function. For ordered alloys,
this reduces to a standard susceptibility form [12]. For
an ordered alloy A~(k; e) consists of delta functions in k
space whenever the dispersion relationship is satisfied, i.e.,
6 (E Ek). In a disordered alloy, these delta functions
broaden and shift (in energy) due to the disorder and
alloying effects. A disordered alloy's "Fermi surface" can
be described by tracing the loci of peak positions at e&,
if the widths are small on the scale of the Brillouin zone
dimension. Peaks in S(2)(q) can arise from states around
the ef in two ways: due to parallel, Hat sheets of Fermi
surface which give a large convolution as E E 0 (so-
called Fermi-surface nesting), or, as described below, due
to a large joint density of states connecting van Hove
singularities at or near e+.

As shown in Fig. 1, the Fermi surface of disorder-d
CuPt has a distinctive "neck" feature near the L point
similar to elemental Cu. Furthermore, pockets of d holes
exist at the X points, since eF cuts the density of states
near the top of a feature that is mainly Pt d in character;
see Fig. 2(a). As a result, the joint density of states in

Eq. (2), and therefore the ASRO, peaks at (2, 2, 2) due to
the large joint electron density of states at X = (0, 0, 1)

1 1 1
and L = (2, 2, 2). Notice that the spanning vector XLis-
a member of the star of L which is the ordering wave
vector for the Ll ~ ordering tendency [5].

FIG. 1. The Fermi surface, i.e., A~(k; eJ;), for disordered
CuPt for portions of the (1, 1, 0) (1 X U L IC), and (1, 0-, 0)---
(I X W Jt W X L) plane-s. -Sp-ec-tral -w-eight is given by relative
grey scale, with black as largest and white as background. Note
the neck at L and the smeared pockets at X.
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FIG. 2. Total densities of states for (a) disordered CuPt, using
the scalar-relativistic KKR-CPA method; ordered CuPt in the
(b) L), and (c) L10 structures, using the scalar-relativistic
LMTO method. The dashed line indicates the Fermi energy.
Note the change of scale in partial Pt state densities.

FIG. 3. LMTO CuPt band structure near eF for (a) Ll
~

and
(b) L10. The plots are along the same directions in reciprocal
space, with indicated indices and symmetry points referring to
the underlying fcc structure. Note the removal of degeneracy
around (000) and (---) in L1 ~.

The ordering mechanism described here is similar
to the conventional Fermi-surface-nesting mechanism,
in that both are examples of Bethe-Peierls instabilities.
However, conventional Ferrm-surface nesting takes place
over extended regions of k space between almost parallel
sheets. The resulting structures tend to be long-period
or incommensurate structures, since the spanning vector
in general will be incommensurate with the lattice. In
contrast, in the mechanism proposed here for CuPt, the
spanning vector couples only the regions around the X and
L points, and the large joint density of states results from
van Hove singularities that exist near eF. This mechanism
will naturally lead to high-symmetry structures with short
periodicities, since the spanning vectors will tend to
connect high-symmetry points.

Below a critical temperature, S(~)(q) indicates that a
I 1 I

state with a concentration wave q = (2, 2, 2) will lower
the free energy of the disordered state. To confirm this,
we calculated the total energy, bands, and densities of
states for two ordered configurations using the linear
muffin tin orbital method (LMTO) as well as the density
of states for the disordered state [19].

In the disordered case, Fig. 2(a), eF cuts the top of
the Pt d band, which is consistent with the X pockets
in the Fermi surface. In the Lli structure, which can

1 1 1
he viewed as an alloy with a q = (2, 2, 2) concentration
wave with unit amplitude, the density of states at eI-, is
reduced, since the modulation in concentration introduces
couplings between states at eF.

The Llo density of states in Fig. 2(c) demonstrates
that not all ordered structures will produce this effect.
The Llp structure corresponds to an alloy with q =
(1,0, 0) concentration wave with unit amplitude. The
Fermi level still cuts a substantial amount of the d
electron density of states, although smaller than for
the disordered configuration. Figure 3 clearly shows the
effect of periodicity in the ordered Ll

&
structure, i.e., the

couplings between the fcc X and L points. Whereas, in
the ordered Llp structure, only couplings between two of
the X points and I exist. A small Bethe-Peierls-type set

of bonding and antibonding peaks exist in the L 1
~

Pt d-
state density in Fig. 2(b), with the bonding portion (of
mixed X and L character) just below eF. Furthermore,
the associated lowering of the energy is confirmed by the
ordered-LMTO total-energy calculations. The Llp-Ll

~

energy difference is 2.3 mky per atom in favor of the L1~
structure, which compares well with the 2. 1 mRy energy
difference found using a full-potential method [22].

There remains the question of the robustness of this
mechanism. By lowering the "eF" (in a rigid-band
fashion), thereby increasing the number of hole states at

1 I 1

the X points, it should he more difficult for a (2, z, 2)
concentration wave to occupy these X pockets in the
ordered state, so Ll] ordering should not be favored.
Indeed, calculations repeated with the Fermi level lowered
by 30 mRy (into the Pt d-electron peak near eF, see
Fig. 2) resulted in a large clustering tendency, which is
dramatically increased with further reduction in eF. On
the other hand, raising eF by 30 mRy, just above the Pt d-
electron states in the random alloy in Fig. 2, gives peaks
in 5( )(q) at all X points, indicating L 1o-type ordering. By
filling the hole pockets in the Pt d states of the disordered
alloy, thereby removing the van Hove singularities at eF,
there is no advantage by ordering into L 1 ~ over L lp.

The above simple electron-per-atom arguments applied
within a rigid-band approach may not be useful, however,
for pointing to a suitable candidate to alter the ordering of
CuPt to (100)-type ordering because such arguments are
not valid when alloying late transition metals with noble
metals, since both diagonal and off-diagonal disorder
drive the ordering in such situations [10,23]. We find that

1 1 [

the band-energy contribution alone favors q = (2, 2, 2)
ordering over a wide range of Pt concentration, and the
inclusion of double-counting terms are required to obtain
a change in ordering with concentration. Clearly, filling
up the d holes is sufficient to change the fcc ordering
tendency of CuPt.

While this novel Fermi-surface and van Hove—
singularity mechanism is evident around 50% Cu, the
L12 ordering to the Cu-rich side of the usual 75%
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stoichiometry and the subsequent development of the
one-dimensional LPS around 73% Cu [I] suggest that
a conventional Fermi-surface mechanism is operable.
Indeed, we find nested regions of Fermi surface in the
(100) plane (see Fig. I) associated with the s-p electrons,
as found in Cu-rich Cu-Pd alloys [8]. The Fermi-surface
dimensions are concentration dependent, and, at 73%
Cu, Krivoglaz [24] construction suggests a peak in n(q)
at q = (1,0.2, 0), as we, in fact, find, provided both
band-energy and double-counting terms are included.
Thus, within the Cu-Pt system we find a crossover from
a conventional Fermi-surface ordering mechanism around
75% Cu to ordering dominated by the novel van Hove—
singularity —driven mechanism at 50%. As we progress
to still higher Pt concentrations, we find that the ASRO
for CuPt3 has peaks at L with subsidiary peaks at X. The
ordered tetragonal fcc-based superstructure of CuPt3 is
consistent with concentration waves associated with these

q vectors [5]. This interesting concentration dependence
of the ordering tendency is the subject of a larger, more
detailed paper.

Finally, we consider whether this unusual van Hove
mechanism may play a role in other Pt alloy systems.
The origins of Llp ordering in NiPt have been discussed
elsewhere [10,23]. For both AgPt and AuPt, we find
strong clustering tendencies (AuPt the largest, as seen
experimentally), but with small accompanying peaks at

I 1 1

(2, 2, 2) from a similar mechanism, with the AuPt satellite
peak fairly small. Unfortunately, there is no solid solution
AgPt phase to confirm this, and only a very narrow
solid solution phase for AuPt [I]. (Perhaps with modern
surface growth techniques, metastable L1& AgPt could be
formed. ) This indicates that CuPt is indeed unique in its
electronic nature, hence the atypical Ll& ordering [25].
Nonetheless, it is possible that the van Hove mechanism is
in operation in other fcc systems, or other Bravais lattices.
Since the mechanism naturally gives rise to structures
with small unit cells, it would be interesting to identify
structures which are not obviously stabilized by other
mechanisms (e.g. , electrostatics) to see if this effect may
also be in operation there.

In summary, we have shown that the stability of the
ordered CuPt structure (relative to the disordered state)
originates from a novel mechanism which derives an or-
dering wave vector by connecting van Hove singularities
at two high-symmetry points, the X and L points. In gen-
eral, the mechanism will lead to simple ordered structures,
like Ll ~. At low temperatures, the Ll ~ structure in CuPt
is stabilized by filling the X-hole pockets. This requires a
Bethe-Peierls-type mechanism to be active, which is con-
firmed by the ordered LMTO calculations. Because of the
nature of the CuPt electronic structure, the L1] is uniquely
observable in the CuPt system.
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