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Maximum Overheating and Partial Wetting of Nonmelting Solid Surfaces
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Surfaces which do not exhibit surface melting below the melting point (nonmelting surfaces) have
been recently observed to sustain a very large amount of overheating. We present a theory which
identifies a maximum overheating temperature, and relates it to other thermodynamical properties of
the surface, in particular, to geometrical properties more readily accessible to experiment. These are
the angle of partial wetting and the nonmelting-induced faceting angle. We also present molecular
dynamics simulations of a liquid droplet deposited on Al(111), showing lack of spreading and partial
wetting in good agreement with the theory.

PACS numbers: 68.10.Cr, 61.50.Jr, 68.45.Gd

For a long time crystal overheating above the bulk melt-
ing temperature T has been believed to be impossible, at
least in the presence of a free clean surface. The standard
argument [1,2] is that surface premelting will always take
place and act as a ubiquitous seed for the liquid to grow.
The well-known surface melting of Pb(110) [3,4] pro-
vided first microscopic evidence of how liquid nucleation
takes place on a solid below T . It was only a little later
that simulations of Au(111) [5] and newer experiments
on Pb(111) [6] and Al(111) [7] demonstrated microscopi-
cally that the opposite could also happen, namely, that
certain surfaces may exhibit nonmelting up to and, in fact,
even above the melting point [5,8]. A solid bounded by
such surfaces can therefore be overheated, although in a
metastable state, above T . Metois and Heyraud have first
shown that small Pb particles with strictly (111)facets are
easily overheated by a few degrees above T [9]. Even
more strikingly, Herman and Elsayed-Ali found that a flat
nonmelting Pb surface can be overheated by as much as
120 K above T [10]. This implies that the free energy of
a crystal surface can have a local minimum for zero liquid
thickness. As in other nucleation problems one should
thus expect the metastable overheated state to survive up
to some instability temperature T; ) T, where the bar-
rier finally disappears (Fig. 1, inset). At present, how-
ever, there is no further available understanding of this
phenomenon. In particular, there are no means to calcu-
late T; and possibly connect it with other quantities which
are more readily measurable in a surface experiment. At a
more microscopic level, it is very desirable to understand
the different behavior of a nonmelting and of a melting
surface, against nucleation of the liquid.

In this Letter, we introduce a simple theory of surface
nonmelting which predicts the existence of a T;, and con-
nects its value with apparently unrelated geometrical quan-
tities. These are the partial wetting angle 0 which a drop
of melt will form with that crystal surface at T = T, and
the faceting angle 0, of a vicinal surface. The angle 0
has also been rather commonly measured in the past, a few
early examples being the (0001) face of Cd [11] and the
(100) faces of several alkali halides [12]. The nonmelting-

induced faceting [13,14] angle 0, has been well character-
ized experimentally and theoretically for (111)vicinals of
Au [13,15], Cu [16], and Pb [13,14,17,18]. The connec-
tion we find between 0, 0, , and T; offers new insight into
nonmelting surfaces. At a microscopic level, we substanti-
ate this connection with molecular dynamics (MD) simula-
tions of Al(111), which demonstrate both the nonspreading
of a liquid drop at T and the overheating of the Oat face.
The predicted relationship between 0, O„and T; is found
to be in excellent agreement with the simulation results, as
well as with experiments.

(i) Theory. Consider a—liquid film of thickness
sandwiched between semi-infinite solid and vapor, and let
8 grow from zero (no liquid) to a finite value. The change
in free energy per unit area takes the standard form [4]

AF(Z) = pLC(1 —T/T, ) + Ay(Z),

where p is the liquid density, L the latent heat of melting,
and b. y(4) the difference between the overall free energy
of the two interacting solid-liquid (SL) and liquid-vapor
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FIG. 1. Critical liquid thickness of a nonmelting surface vs
temperature above T (schematic). A system with a liquid
film thinner than the critical value will recrystallize for any
T between T and T;. One with a thicker film will melt
completely. Inset: free energy change upon conversion of a
film of thickness 4 from solid to liquid. From T,

„
to T; the

solid surface is a local minimum.
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sv yLv cosOLv + ysL cos~sL (4)

RLv sinLv RsL sinsL (5)
where RLv, RsL are the radii of, respectively, the LV and
SL drop boundaries (supposedly spherical). Equation (4)
is simply the balance of lateral forces, while Eq. (5) fol-
lows from simple geometry. Laplace's pressure equation
P = 2y/R determines the shape ratio x(T) =—RLv/RsL =
»»sL/»n~Lv = [yr vPsr. (T)]/[ysr. PLv(T)]. Since Psr. ~

(LV) interfaces separated by a distance 8, and the free
energy of the solid-vapor (SV) interface. By definition,
b, y(0) = 0. Assuming short-range forces only, this term
can be written phenomenologically as /rr, y(8) = b, y„[1—
exp( —8/s)], where Ay —= ysL + yLv —ysv is the net
free energy change upon conversion of the SV interface in
two noninteracting SL and LV interfaces, and g is a corre-
lation length in the liquid. For a melting surface Ay
0, and, for T ( T ( T, AF will have a minimum at
Zrr(T) = s ln[T ~Ay ~/(T —T)Lpg] which is the mean-
field thickness of the melted film [4]. The wetting tempera-
ture defined by Zo(T ) = 0 is T = T (1 —

~
b, y ~/L p g).

For a nonmelting surface Ay ) 0, and we move over to
T ) T . Here, /r. F(8) will instead have a local minimum
at 4 = 0, the absolute minimum for 4 ~, and a maximum
at a critical thickness

8(T) = s ln
T Ay

T —T Lp

as shown in Fig. 1. The local minimum at 4 = 0 signi-
fies metastability of the crystalline surface for T ( T;, the
maximum overheating temperature. The minimum disap-
pears when Z, (T, ) = 0, yielding

T;=T l+ (3)

Above T;, the crystal surface will melt, no matter what its
initial state is. In particular, a surface which is initially
crystalline will wet itself with a liquid film, which will
grow, and gradually melt the whole crystal. Hence T;
can be seen as a nonequilibrium wetting temperature, or,
more accurately, as a spinodal point for the overheated
solid surface. For T ( T ( T;, the predicted behavior
is that typical of a nucleation problem. If the surface is
prepared initially with a melted film of thickness 4 ) 4,
(upper vertical arrow in Fig. 1), then melting will proceed,
and 8 will grow to infinity, reaching full equilibrium. If,
conversely, the starting thickness is less than f„then
the surface will recrystallize to reach the local metastable
minimum at 4 = 0 (lower arrow in Fig. 1). This peculiar
behavior was first found and described in detail in an early
simulation of the nonmelting surface Au(111) [5].

We now show that there is a simple connection between
T; and the macroscopic nonwetting angle 0 at T = T .
Following Nozieres [19],the angles OLv, OsL, formed by a
drop of melt onto a nonwetting surface of the same material
(Fig. 2), satisfy the equations
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FIG. 2. Shape of a drop of melt onto a nonmelting solid
surface of the same material. The two interfaces separating
solid and liquid (SL), and liquid and vapor (LV) are assumed
to be spherical, with radii RsL and RLv and contact angles 0SL
and 0Lv, respectively.

(T —T ) near T, we expect HsL to switch from nega-
tiveforT (T topositiveforT ~ T . AtT = T, x =
6sL 0, RLV = ~, and OLv

rrs(~) = ysv + pt + gt

oL(~) (yLv + ysL)V 1 + (9)

where p, and g are the step free energy and the step-step
repulsion on the solid surface. Here we have further as-
sumed that ysL is approximately independent of 0. The
faceting angle is given by 0, = arctant, which satisfies
the double tangent construction: co + canto

= ysv + p, to +
gto, cr = p, + 3gtrr, and crr + crt, = (yr. v + ysL) Jl + t,2
cr = (yLv + ysL)t, /Ql + t, . A particularly simple so-
lution is obtained if the cubic (step-step repulsion) term
gto can be ignored, whence to = 0, co = ysv, ci =
[(yLv + ysL) —ysv]'t (note the nonanalyticity of o.s

cosO = 1—
yLV

A comparison of (6) with (3) shows that knowledge
os y at T = T determines both T; and 0, which are
monotonically related by

T; 2yLv ~ 2 m
(7)T Lpg 2

For a nonmelting surface there is a second important
angle O„which is the nonmelting-induced faceting angle
[13,14]. Consider vicinal faces tilted at an angle 0 away
from the nonmelting face. At T = T there are two well-
defined free energy minima (solid, 8 = 0 and liquid, 4 =
~). We can thus draw [19] the two projected surface free
energy branches rT(0) = y(0)/cosO as a function of the
step density t =

~
tan0). The two branches are approxi-

mately given by the standard expressions
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at t = 0), and t, = ([(yLv + ysL)/ysv] —I)'i . Even
when this approximation cannot be made and to is nonzero
[as is the case for Pb(111) [14], where arctanrp = 2 ], the
above is still a pretty good approximation to the faceting
angle, which is therefore simply related to Ay, Al(110)

Al(l 1 1)T=0.99 Tm

(a) g', .".";, 'sI, O ps (C1) 0 s

cos0, = 1+ (10)

Equation (4) shows that 9, is identical to both the droplet
angles 0Lv, 0sL at a single temperature T„)T, satisfy-
ing x(T„)= RLv/RsL = 1. We note that 0, is slightly
smaller than 0 . The outer droplet angle 0Lv will there-
fore decrease from 0 to 0, to zero when T is raised
from T to T, to T;. Finally, we observe that a physical
upper bound for 0 and 0, is given by Ay
whence 0 « 90, and 0, « 60, i.e., a melt must at least
partially wet its own solid.

(ii) MD simulations. —Choosing Al(111) as our test
case, we have simulated its behavior at and above T
using the recent accurate glue potential of Ercolessi and
Adams [20], derived by fitting to first-principles data.
First, the approximate bulk melting point for this potential
was determined using the phase coexistence technique [21]
and found to be T = 939 ~ 5 K (against an experimental
value of Tm = 933.6 K). Then a 16-layer slab with three
rigid bottom layers, one free surface, 224 atoms per layer,
and x-y periodic boundary conditions was studied as a
function of T. As T was reached and crossed, the surface
remained crystalline (metastable) as expected, up to a large
T; = 1088 +. 18 K = T + (149 ~ 18) K, even for very
long (2 ns) runs. On the basis of our theory, using the
known values of p = 0.0534 A 3, L = 105.4 meV/atom
[20], and an estimated g = 2.6 ~ 0.3 A [22], we extract
from (3) Ay = 2.3 ~ 0.4 meVA. . Inserting in Eq. (6),
with an estimated value of yLv = 46.6 meV A (obtained
with a separate simulation of the free liquid surface at
T = T ), we finally predict 8 = (18 +. 2) and, with a
value ysv = 54.3 meV A. 2 [20], 0, = (16 ~ 2) .

To check this prediction, we have prepared an 861 Al
atom cluster which is fully melted and forms a liquid
drop already at 900 K [23]. By depositing this Al drop
on any given Al surface, we can learn about its wetting
habit. We deposit it first on the Al(110) face, which
is prone to melting [7]. At T = 930 K (below T, but
above T ), the drop spreads out completely within 100 ps
[Figs. 3(a)—3(c)]. However, when deposited on the non-
melting Al(111) face it does not diffuse away, but rather
settles down as expected with well-defined exterior and
interior angles whose azimuthal average (0) we can ex-
tract. By increasing temperature across T, from 930
to 945 K, we find that (HLv) changes from (24 ~ 3) to
(21 ~ 1), and (Hsv) from —(OLv) (the droplet is essen-
tially crystallized) to (44 ~ 6) . By interpolation we ex-
tract 0 = (22 ~ 3), in fairly good agreement with the
predicted value (18 ~ 2) . The approximate values of g
and of yLv (about 20% lower than its experimental value,

(b) 10 ps, (e) 15 s

(c) ~OOps (f) 150 s

with our potential) constitute sources of error. Additional
discrepancies are to be attributed to the macroscopic and
phenomenological nature of the theory, which should, in
principle, be improved to include Auctuations and finite-
size effects. On the simulation side, one could consider in
the future finite-size scaling as a possibility.

(iii) Connection with experiments. —We are not aware
of measurements of 0, g„orT; on Al(111), for which we
have thus a direct prediction. On Pb(111) van Pinxteren
and Frenken [14] measured 8, = (14.7 4- 1.4), from
where we are using Eq. (10), and for ysv ——34 meVA ~

we obtain Ay = 1.2 ~ 0.2 meVA. 2. Furthermore, us-
ing p = 0.033 A 3, L = 50 meV/atom, and g = 2.7 A
(averaging data from Ref. [24] as suggested in [14]),
we obtain via Eq. (3) T; = T + (150 ~ 30) K. This is
in rather good agreement with the experimental result,

FIG. 3. Evolution of an 861-particle liquid drop of Al on
a substrate of the same material. Left column: drop on a
surface undergoing surface melting [Al(110) at T = 0.99 T ]
(a) before contact; (b) after contact, the drop spreads readily;
(c) the drop has been fully absorbed. Right column: drop
on a nonmelting overheated surface [Al(111) at T = 1.01 T ]
(d) before contact; (e) after contact: the drop settles, but
does not spread; (f) final drop shape. Darkness of atoms is
proportional to their square displacement in the run.
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T;
" = Tm + 120 K [10]. From Eq. (6), using yLv ——

28 meV A, we also predict 0 = (16 ~ 1) for a droplet
on Pb(111) at T = T . For Al(100), another nonmelting
surface [25], we find by simulation T; = 1025 ~ 5 K, and
assuming sc = 3 A we Predict 0 = 15 and 0, = 13 .
For Cd(0001), where 0 = (37 ~ 1) [11],and using p =
0.043 A, L = 64 meV/atom, y» = 40 meVA 2, and
again a guessed g = 3 A, we get T; = T + 580 K, close
to twice the melting temperature (594 K). Application
of this scheme to Ge(111) or NaCI(111) appears instead
problematic, due to the essential role of long-range forces
in these cases. In fact, Ge(111) has a negative Hamaker
constant, which is probably related to its nonmelting be-
havior [26], while long-range Coulomb forces are likely to
be relevant to the nonmelting of NaCI(100). Finally, the
present scheme is probably also inapplicable in its sim-
plest form to surfaces such as Pb(100) or Au(100) which
undergo incomplete melting [17,27 —29].

In summary, we have described new results on the non-
melting crystal surfaces. A simple theory of nonmelting is
given, which describes the metastable solid surface above
T, up to a maximum overheating temperature T; which
acts as a spinodal point. This temperature is found to have
a simple connection with the partial wetting angle of the
surface by its own melt at T = T, and with the tilting
angle of melted regions in vicinals undergoing nonmelting-
induced faceting. Computer simulations on Al(111), as
well as available data on Pb(111), are in good agreement
with this theory.
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