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Casimir Interaction of Spheres in a Fluid at the Critical Point

Theodore W. Burkhardt
Department of Physics, Temple University, Philadelphia, Pennsylvania 19122

Erich Eisenriegler
Institut fur Festkorperforschung, Forschungszentrum, 52425 Ju lich', Germany

(Received 22 November 1994)

Critical fluctuations give rise to long-range Casimir forces between inert uncharged particles
immersed in a fluid at the critical point. With simple, exact arguments utilizing conformal invariance,
we analyze the Casimir force between two spheres in an unbounded critical fluid, and between a single
sphere and the planar boundary of a semi-infinite fluid. The Casimir force has a much longer range
than the van der Waals force and should lead to aggregation of colloidal particles.
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Vacuum fluctuations of the electromagnetic field be-
tween infinite uncharged conducting plates with separa-
tion L lead to an attractive Casimir [1] force per unit area

(7r2/—240) hcL
There are comparable long-range forces due to critical

fluctuations that also go under the name of Casimir forces.
Consider a nearly critical fIuid between parallel plates,
for example, a one-component fluid near the liquid-vapor
critical point, a binary mixture near the consolute (critical
demixing) point, or liquid He near the A transition. The
boundaries inhuence the system to a depth given by the
bulk correlation length se —~T —T, ~

'. For $ (( L the
fluctuation-induced force between the plates is negligible.
At the critical point g diverges, and the force becomes
long ranged.

In general, the free energy

F = kBT lnTr exp—( M/kqT)—
of a d-dimensional critical system in the form of a film
with thickness L, area M ', and boundary conditions a
and b on the two surfaces has the asymptotic form

F = kttTM (Lfg + fs +fs + L 6b+. )
d —

1 (~) (b) —(d —l)

(2)

in the limits L, M ~ with M && L. Here f~ and fs
are reduced bulk and surface free energies, respectively,
and A, b is the amplitude of the Casimir interaction. The
L dependence of the Casimir term, derived in 1978 by
Fisher and de Gennes [2], follows from scale invariance
of the free energy. The amplitude 6,b is universal
[3], depending only on the bulk universality class and
the universality class of the boundary conditions. In
recent years results for 5,b in several systems have
been obtained with conformal-invariance methods [4—7]
in d = 2 and with renormalized field theory [8—12] in
d =4 —e.

Equation (2) holds for both magnetic and fiuid systems
at criticality. The one-component Quid at the liquid-

vapor critical point and the binary quid at the consolute
point belong to the Ising universality class. Each plate
generally attracts one of the two phases preferentially, i.e.,
breaks the up-down Ising symmetry. These quid systems
correspond to the Ising model with ab =tt' boundary
conditions if both plates prefer the same phase, and
t'J boundary conditions if they prefer different phases.
Liquid 4He at the lambda transition belongs to the XY
universality class with "ordinary" (a, b = OO) boundary
conditions [13] that suppress the order parameter at the
boundary and do not break the XY rotational symmetry.

In this Letter we consider the Casimir force between
inert uncharged spherical objects, for example, colloidal
particles immersed in a Quid at criticality. Satisfying
the criticality condition se » L experimentally for macro-
scopic L in the parallel-plate geometry requires extremely
fine temperature resolution. The critical regime $ » r for
particles with separation r in suspension is more acces-
sible, and some experimental results have been reported
[14]. In earlier theoretical work de Gennes [15]calculated
the Casimir force between two spheres in a critical fIuid
approximately from a local free-energy functional. At-
tard, Ursenbach, and Patey [16]applied Ornstein-Zernicke
theory in the nearly critical case. Here we analyze the
Casimir interaction between two spheres in an infinite crit-
ical fiuid exactly on the basis of conformal invariance [17]
in general dimension d. It is shown that the Casimir in-
teraction only depends on a single conformally invariant
cross ratio. Exact analytical results are given for spheres
that nearly touch and spheres that are widely separated.

As shown below, the Casimir potential of two widely
separated spheres with symmetry-breaking boundary con-
ditions decays as r ~~, like the spin-spin correlation
function of the corresponding magnetic system. If neither
or only one of the spheres has symmetry-breaking bound-
ary conditions, the Casimir potential decays as r
like the energy-energy correlation function of the mag-
netic system. This is fairly obvious but has not been
clearly stated in earlier work. We will see that the Casimir
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force is attractive for equal boundary condition on both
spheres and has a much longer range than the van der
Waals force. It should give rise to aggregation of col-
loidal particles as the critical point of the host fluid is
approached.

We begin with two spheres with radii R~ and R2,
boundary conditions a and b, and separation r (measured
from center to center) in an infinite critical medium. The
Casimir interaction AF,b(r, Ri, R2) is defined as the total
free energy of the system minus its value for r = ~.
Scale invariance requires AF b to be a function of two
independent scale-invariant variables [18], for example,
r (R|R2) ' and R|R2 . Conformal invariance in general
dimension d imposes the stronger constraint that AF, b

only depend on a single variable

~ = (2R, R, ) '~r' —R', —R22~.

D = r —R~ —R2 is the distance between the closest
points of the spheres, a = 1 + (Rl

' + Rz ')D, and

AF b(r, Ri, R2) = kiiT, Sdk b[2(Ri + R2 ')D]

D « R(, R2.

We now consider the opposite limit of spheres far
apart in comparison with their radii. In the spirit of the
operator-product expansion [17] we make a "small-sphere
expansion" of the Boltzmann factor expt —AA, (r, R)] of
a sphere of radius R with boundary condition a centered
at r in terms of a complete set of local operators in the
form

exp[ —5A, (r, R)] = d, [I + c@R"4' P (r)

+ c,'R"a(r) +

In general d the conformal group consists [17] of
homogeneous translations, rotations, and dilatations and
the inversion x' = x~x~ . The latter maps a sphere
with radius R centered at ro onto a sphere with radius
R' = R

~ ro —R
~

' centered at ro = ro(ro —R ) '. lt is
simple to verify that ~' = (2Ri R2) ' ~r' —Ri —Rz ~

=
K under these transformations. The invariance of K also
follows from the conformal invariance of cross ratios
[19]. The inversion maps two nonoverlapping spheres 1,
2 in an infinite critical medium onto two nonoverlapping
spheres 1', 2' in an infinite critical medium if the origin
or inversion point is chosen outside spheres 1 and 2.
If the origin is chosen inside one of the spheres, say,
sphere 2, sphere 1' is completely enclosed by sphere
2'. This has also been pointed out by Gnutzmann and
Ritschel [20]. Thus the free energies of two spheres in an
unbounded critical fluid and of one sphere in a spherical
tank of critical fluid are both given by the same universal
function,

Here only three terms in the expansion, the identity
operator, the order parameter P, and the energy density

e, are shown explicitly. The quantities d„ca, c are
constant coefficients, and x@ and x, are the scaling
dimensions of @ and ~, given in terms of conventional
critical exponents by

1

xd, = p/v =
2 (d —2 + g), x, = d —1/v. (8)

(P(ri)P(r2))b„ik = Bp r (9)

and the profile

The factors R'&, R" are required for scale invariance.
Conformal invariance implies a relation between the

coefficients ca, with P = @,a in Eq. (7), and the more
familiar amplitudes B~ and A~ defined by the bulk
correlation function

AF,b(r, RiRp) ,= kiiT, +,b(K), (4)

of a single variable ~, with 1 ( ~ ( ~. Equation (4) also
follows [19] from an analysis in terms of the stress tensor.

The asymptotic form of +,b(~) for ~ ~ 1 is determined
by the Casimir interaction (2) for parallel plates. Consid-
ering the case r = 0 of concentric spheres and comparing
Eqs. (2)—(4) in the limit Ri, R2 ~ with L = Rq —R2
fixed, we obtain

Sab(+) Sd ~ah[2(+ 1)] 0(K —1«1.

Here Sd = 2~"~ 1(d/2) ' is the surface area of the d-
dimensional unit sphere.

The asymptotic form (5) determines the Casimir in-
teraction of two spheres in an unbounded critical fluid
that nearly touch [18]. In the limit D (& Ri, R2, where

in the half space r& ) 0 with boundary condition a.
This may be seen as follows: Outside a single spherical
boundary centered at the origin of an infinite critical
system,

(P(r));,„„,= W.'(R 'lr' —R'~) ",-

as derived in [21] from a conformal mapping of
the half-space profile (10). In the limit r » R,
(p(r));~b„, may also be calculated in the form
(P(r) exp[ —EA, (0, R)])b„ik(exp[ —591,(O,R)])b„')k with
the small-sphere expansion (7). Equating the two expres-
sions yields

A~(R 'r ) '~ = (P(r) [c~R ~@(0) + c'R 'a(r)]),„„.
(12)
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Inserting Eq. (9) into (12) and setting P = @ and t('j = a,
we obtain

c~ = A~/Bp, c,' = A;/B, . (13)

Unlike fixed-spin boundary conditions, ordinary (0) and
special (Sp) boundary conditions [13] do not break the

Ising up-down or XY rotational symmetry. Thus cz =
cs = 0, Ac) = As„——0 in Eqs. (7) and (10).

Including a contribution (7) for each sphere in (1), we
write the free energy of n widely separated spheres in an
infinite critical medium as

Aa Ab
Sob (&) = — (2&) a &&1. (16)

Here to
= @ for symmetry-breaking boundary conditions

on both spheres, and (b = a if neither of the two spheres
or only one has symmetry-breaking boundary conditions.
Note that for equal boundary conditions on both spheres
the Casimir interaction (15) is attractive.

For arbitrary n the right side of (14) may be expanded
in cumulants of many-point correlation functions. For
widely separated spheres all but the two-point correla-
tions may be neglected [22], and the Casimir interaction
reduces to a sum of two-body terms (15).

The Casimir interaction of a single sphere with the
planar boundary of a semi-infinite critical system follows
from our results for two spheres in the limit R2 ~ co.

Denoting the radius of the single sphere by R, and the
distance from its center to the planar boundary by R + D,
we obtain a = 1 + R 'D from Eq. (3). From this result
and Eqs. (4), (5), and (16),

/) F„..., (r(, . . . , r„,R(, . . . , R, )
n

kqT, ln— [1 + c~R; @(r;) + ] . (14)
i=1 130110

For n = 2 only pair correlation functions (9) appear in

Eq. (14), and from (9) and (13)
Aa Ab R1R2AF,b(r, R(, Rp) = kaT, — )" (15)

I"

f » R1, R2,

(Ac))2 1 2

B, 2
= —[I + 0( )],

(As() 1 2

B, 2 3
1 + —e + O(e )), (20)

where Az and As~ have opposite signs [19]. Assuming

that (Ao)2B&' varies monotonically with d for 2 ~ d ~ 4
and comparing Eqs. (18) and (19), we expect (Al ) B&' in

d = 3 to be somewhat larger than ~2 and (A~) B, ' and

(As~) B, ' to lie between 2 and 1. For the XY model [24]
in d = 3, x@ = 0.519, and x, = 1.51.

2
IO

0
IO

-2
10

The exact scaling function g,b(~) for the d = 2 Ising
model is shown in Fig. 1. The curves were calculated
from the partition function of the finite critical Ising model
on a cylinder [6], using a conformal mapping onto an
annulus. The curves interpolate smoothly and monoton-
ically between the asymptotic expressions (5) and (16),
indicated by dashed lines. For equal boundary conditions
ab =t"[, 00, g,b(~) is negative, corresponding to an
attractive Casimir force. For unequal boundary conditions
ab =t'J, t' 0, g,b(~) is positive, and the Casimir force is
repulsive.

For the Ising model [24] in d = 3, x~ = 0.518 and
x, = 1.41. Ind =4 —e

(At), 62= 45m '
1 ——e + O(s~)), (19)

By 27

F.„(D,R) = kgT, X

(d —1)/2
R

Sd~ab 2D, D && R,

D»RAaAb R

B0, 2D

(17) -4
IO

where P = P if both boundaries have symmetry-breaking
boundary conditions and P = e otherwise.

1For the Ising model in d = 2, x@ = 8, x, = 1, and
IO

0
IO

2
IO

I

4
IO

(A, )'/B~ = &2, (A', )'/B. = I, (18)

with A&
= —A~, A~ = —

A&
= —A~, as follows from

Cardy's results [23] for ((/ @) and (a~) in the half plane.

FIG. l. Absolute value of the scaling function +,b((4) for the
d = 2 Ising model. The absolute values of the asymptotic
forms (5) and (16) are indicated by dashed lines. +,b(N. ) is
negative for like boundary conditions ab =II, OO and positive
for mixed boundary conditions ab =II, I O.
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The values of x~ and x, in d = 3 imply an r ' decay
of the Casimir potential energy of two widely separated
colloidal particles in a one-component Quid at the liquid-
vapor critical point or a binary mixture at the consolute
point (Ising model with ']' boundary conditions). This is
in excellent agreement with the r ' decay in de Gennes'
approximate theory [15]. For colloidal particles in helium
at the lambda temperature (XY model with OO boundary
conditions) the Casimir potential decays as r 3 oz. The am-

plitude is given in Eq. (15), with (Aa ) B~ of order 1. The
Casimir force decays much more slowly than the van der
Waals force and is stronger than the van der Waals force
for all r ~ R [ + R2. For the r ' decay the volume inte-
gral J d r AF,b(r, Rt r R2) diverges; i.e., the total potential
energy of a homogeneous configuration of colloidal parti-
cles is more than extensive. In the case of the r decay
the volume integral almost diverges. Note that the r
interaction differs only slightly from the r ' potential of
Newtonian gravitation. The thermodynamics of systems
controlled by gravitational forces is an extensively stud-
ied, still controversial topic [25].

Liquid-vapor-like transitions of colloidal particles in
nearly critical fluids due to the van der Waals attraction
of the particles have been analyzed theoretically and ex-
perimentally [26]. Even if the van der Waals force alone
is not strong enough to produce a phase transition of the
colloidal particles, they should form a condensed phase at
the critical point of the quid due to the strong, long-range
Casimir force. Since the correlation length grows as the
critical point is approached from above or below, we ex-
pect aggregation or ftocculation due to the Casimir force
for T] & T ( T2, where the temperatures T( and Tp mark-

ing the onset of Aocculation are on opposite sides of T, .
Flocculation of colloidal particles in nearly critical

Iluids has been observed [14] experimentally. In addition
to the Casimir force other possible mechanisms, such
as a modification of the interparticle potential due to
critical adsorption, have been suggested. We hope that
our quantitative predictions will be useful in clarifying
the role of the Casimir force in experiments of this type.
It would be interesting to have experimental results on
the behavior of colloidal particles in liquid 4He near the
lambda transition, since the ordinary boundary condition
does not favor critical adsorption.

We thank W. Fenzl, M. E. Fisher, P. Hemmer,
H. Lowen, G. Stell, H. Wagner, and especially
U. Ritschel for helpful comments and discussions.

[I]

[2]

[3]
[4]

[5]
[6]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]
[20]
[21]

[22]

[23]
[24]

[25]

[26]

H. B.G. Casimir, Proc. Kon. Ned. Akad. Wetenschap B
51, 793 (1948).
M. E. Fisher and P.-G. de Gennes, C. R. Acad. Sci. Paris
B 287, 207 (1978).
V. Privman and M. E. Fisher, Phys. Rev. B 30, 322 (1984).
H. W. J. Blote, J.L. Cardy, and M. P. Nightingale, Phys.
Rev. Lett. 56, 742 (1986).
I. Affleck, Phys. Rev. Lett. 56, 746 (1986).
J. L. Cardy, Nucl. Phys. B275, 200 (1986).
T. W. Burkhardt and E. Eisenriegler, Nucl. Phys. B424,
487 (1994).
K. Symanzik, Nucl. Phys. B190, 1 (1981).
J.O. Indekeu, M. P. Nightingale, and W. V. Wang, Phys.
Rev. B 34, 330 (1986).
M. Krech and S. Dietrich, Phys. Rev. Lett. 66, 345 (1991);
67, 1055 (1991);Phys. Rev. A 46, 1886 (1992); 46, 1922
(1992); M. Krech, The Casimir Effect in Critical Systems
(World Scientific, Singapore, 1994).
E. Eisenriegler, M. Krech, and S. Dietrich, Phys. Rev.
Lett. 70, 619 (1993).
E. Eisenriegler and M. Stapper, Phys. Rev. B 50, l0009
(1994).
K. Binder, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J.L. Lebowitz (Academic,
London, 1983), Vol. 8, p. 1.
D. Beysens, J.-M. Petit, T. Narayanan, A. Kumar, and
M. L. Broide, Ber. Bunsen-Ges. Phys. Chem. 98, 382
(1994).
P.-G. de Gennes, C. R. Acad. Sci. Paris II 292, 701 (1981).
P. Attard, C. P. Ursenbach, and G. N. Patey, Phys. Rev. A
45, 7621 (1992).
J.L. Cardy, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. L. Lebowitz (Academic, New
York, 1987), Vol. 11, p. 55.
We always assume the distances r, R], R2, D to be much
larger than the characteristic length g due to deviations of
surface couplings and fields from their fixed-point values.
Then AF, b is independent of s.
E. Eisenriegler and U. Ritschel (to be published).
S. Gnutzmann and U. Ritschel, Z. Phys. B 96, 391 (1995).
T. W. Burkhardt and E. Eisenriegler, J. Phys. A 18, L83
(1985).
The N-point terms in the cumulant expansion are of order
(R/r)~'
J. L. Cardy, Nucl. Phys. B240, 514 (1984).
J.C. Le Guillou and J. Zinn-Justin, J. Phys. Lett. 46, L137
(1985).
See M. K.-H. Kiessling, J. Stat. Phys. 55, 203 (1989), and
references therein.
H. Lowen, Phys. Rep. 237, 249 (1994).

3192


