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Direct Electromagnetic Acceleration of a Compact Toroid to High Density and High Speed
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The direct acceleration and compression of a magnetically confined plasma, called a compact toroid
(CT), by an electrical discharge are investigated with numerical time-dependent magnetohydrodynamic
computer simulations. We find that a critical dimensionless parameter P characterizes the resiliency of
a CT to an acceleration over a characteristic distance, and that a CT can be compressed self-similarly
and accelerated to an arbitrary nonrelativistic speed when P is maintained in an appropriate range.

PACS numbers: 52.55.Hc, 52.30.—q, 52.65.Kj, 52.75.Di

There are a variety of devices for accelerating a macro-
scopic quantity of mass to high speed including light gas
guns, electromagnetic rail guns, and deflagration guns. It
has been previously conjectured that a magnetically con-
fined ring could, in principal, be accelerated to high speed
by a sufficiently energetic pulsed electrical discharge [1].
For many possible applications, high mass and high speed
are desired. There are now a number of megajoule-level
pulsed power facilities throughout the world, and with
these facilities comes the potential for imparting speeds of
—106 m/s to milligram masses. Megajoule-level plasma
experiments are expensive, and the plasmas produced in
the laboratory are often difficult to control. Therefore, de-
tailed computer simulation of plasma dynamics is of great
value in increasing the understanding and decreasing the
costs of proposed plasma experiments [2]. If done care-
fully, numerical simulation can lead to a better theoretical
understanding of possibly complex behavior.

A compact toroid (CT) is an axisymmetric toroidal
plasma with a helical magnetic field structure [3]. When
formed between two coaxial electrodes, a CT can be ac-
celerated by an electrical discharge and the CT behaves
like a plasma armature in a coaxial railgun. A CT, mov-
ing at hypervelocity ()105 m/s), may have a variety of
uses [1], including a very fast opening switch [4], the pro-
duction of keV x rays upon stagnation at a wall [5,6], and
the initiation of fusion reactions during the collision of a
CT with another object [1], which may even be a second
CT. These applications of compact toroids involve phys-
ical processes that are enhanced at high plasma density.
Therefore, a design that compresses the CT as it is ac-
celerated is of interest. This Letter gives a prescription
for how to accelerate a CT from rest to an arbitrary non-
relativistic speed between a pair of converging electrodes,
by introducing a critical dimensionless parameter, P, that
describes the resiliency of a CT to an accelerating force.
The acceleration of a CT from rest to high speed has been
studied for a variety of configurations and values of P via
two-dimensional, axisymmetric, time-dependent, magne-
tohydrodynamic (MHD) computer simulations with the ar-
bitrary coordinate code, MAcH2 [7]. The approximation of
axisymmetry is valid for CT rings because they are stable
against tilting [8].

A localized parcel of plasma to which an accelerating
force is applied is, in general, unstable to Quid instabilities
of the Rayleigh-Taylor variety [9,10]. Such instabilities
effectively limit the time over which an accelerating force
can be applied before the parcel is disrupted. However,
because a CT has a small plasma P and is in a minimum
energy state with nonzero magnetic helicity [11],it is less
likely to disrupt when accelerated.

In the MARAUDER effort at the Phillips Laboratory,
described in detail by Degnan et al. [12], a CT is formed
in a magnetized plasma gun with the first of two pulsed
electrical discharges. The second discharge is applied
across the upstream end of the CT which creates a J X 8
force on the plasma that accelerates it. Simulation has been
used to guide the design of these experiments, and there
is quantitative agreement between theory, simulation, and
experiment.

The cross section for a particular converging electrode
geometry with a radial convergence factor of 10 is illus-
trated in Fig. 1. This geometry is chosen to allow direct
drive of the CT to high speed by an external energy source.
(An alternate idea that relies on inductive energy storage
employs a pair of compound cones and is not discussed
here. ) The CT formation gun and trapping volume would
be at the lower (upstream) end of the figure. The conical
electrode geometry is self-similar: The ratio of the elec-
trode gap to the radius is a constant along a line that bisects
the interelectrode gap. A CT that undergoes self-similar
compression maintains a constant aspect ratio; therefore
the length of the CT, fcT, contracts in proportion to the
decrease in the electrode gap during compression, and the
mass density increases.

A simple model for CT dynamics between a pair of coni-
cal electrodes treats the CT as a point object that is char-
acterized by its mass m and its magnetic energy U&. The
cones are characterized by a pair of angles, 0] and 02, mea-
sured from the symmetry axis. (For the geometry of Fig. 1,
H~ = 25.25' and 02 = 33.17 .) At a time t the magnetic
0 point of the CT is located at the position r(t), where r
is the spherical polar radius from the apex of the cones.
In the absence of resistive decay, magnetic flux is con-
served. In this case, the magnetic energy of a CT that un-

dergoes self-similar compression scales inversely with r.
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Ii|II4i IIgj'II' across 4cT. Therefore

(i-)dt ~ (v~)'t',

where dt = dlcT/(vz)'t . For a point object, the accelera-
tion is constant over ZcT. As a consequence, Eq. (3) can
be written as

P[r(t)] =— mrSC T

2Up
(4)

FIG. 1. Sample initial mass density and magnetic field struc-
ture are superimposed on an outline of the computational mesh
of a MACH2 numerical simulation of CT compression and accel-
eration. Here, ro = 1 m and ZcT(t = 0) = 30 cm. Three mag-
netic field lines from the initial Taylor state are shown to twist
around a mass density isosurface. Lines with a higher (lower)
ratio of azimuthal to poloidal components are red (blue).

Us = Uttp rp/r, where Uap is the magnetic energy at some
initial position ro. The converging cones exert a force on
the CT, F„„,= —VU~, that is directed outward in the +r"

direction. It is necessary to overcome this force if a CT is
to be compressed to smaller radius. One possible mecha-
nism is to apply an electrical discharge upstream of the CT
so an electrical current i(t) flows in the plasma between
the electrodes. Such a discharge acts like a piston behind
the CT and applies a force in the —r direction: F p„„=
—2L'i(t) r". L' = (pp/2') In[tan(6I2/2)/tan(0~/2)] is the
inductance per unit length of nested cones (L' = 57 nH/m
for the geometry of Fig. 1) and p, p is the vacuum permea-
bility. The radial force on the low P CT is [13]

F, = L'i (t)'
2

ro Uao

r 2

Written in terms of the dimensionless variable, y(t) —=

r(t)/rp, Eq. (1) has the form

y(t) —~py(t) ' + &(t)' = o, (2)

where tub = Uttp/mrs and A(t) = L'i(t) /2mrp
Of course, in reality a CT is not a point object and the dy-

namics when under the influence of a piston current may
not obey the simple form of Eq. (2). A measure of the
stiffness of a CT is its mean Alfven speed, defined via

zmv& = U~. In order to achieve self-similar compression

of a real CT of finite v~, the acceleration must be con-
strained so that the change in the CT speed is not signih-

cantly greater than (vz)'t2 during an Alfven transit time

where the dimensionless parameter P is similar to ~,f-[

of Ref. [13]. If P is too small, however, the CT can
be made to oscillate by the piston force. The oscillation
frequency about an average trajectory r is (2U&/mr2)'t2
[13]. Oscillations will not have time to develop if the
product of the bounce frequency with the acceleration time
is less than unity. For constant r„the acceleration time
over a distance rp is (2rp/r) 't . In terms of P, the condition
for self-similar compression without oscillations is then

28 rcT 0
2

It is found from simulation that the degree to which a CT
obeys the simple point model described by Eq. (2) is in-

deed determined by the dimensionless ratio P. Interest-
ingly, when written in terms of the mean Alfven speed, P
resembles the inverse of the Froude number from fluid me-
chanics [14]. For a CT undergoing constant acceleration,
P scales as r, and has a maximum value Po at t = 0.

In general, a self-consistent solution to Eq. (2) requires
a dynamical model for i(t) which may involve y(t) It.
is straightforward to solve Eq. (2), usually via numerical
integration, for various i(t). In lieu of solving Eq. (2),
however, it is interesting to ask what current wave form
is required to achieve a particular desirable acceleration.
For example, the equilibrium value, i,q

= (2Ut3/r L')'t,
will maintain the CT at zero acceleration. The piston
current must exceed this value for the CT to be driven
downstream to smaller radius (smaller y).

A simple way for a CT that is initially at rest in the
laboratory frame to achieve high speed is to apply a
constant acceleration so that y(t) = —g/rp, Vt; then the

point CT trajectory is r(t) = rp —2gt2 with i. = gt A—.

radial convergence factor f, yf = 1/'f, will occur at a time

tt when the radial speed is vf . tf = 2rp(1 —yf)/vf. In
terms of yf and vf, the constant acceleration trajectory is

y(t) —= r(t)
ro

The piston current that will accelerate a point CT from rest
at rp to a final speed vf at rp/f is

il y(t)) =
»»L' y(»j» 1 —yf)

+

This current has its minimum value at t = 0 and rises
monotonically with a positive second derivative.
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FIG. 2. Trajectories for simulated CT compression and accel-
eration compared to the point trajectory of Eq. (2). Po = 0.025
(diamonds), Po ——1.25 (plus signs), Pr, = 25 (boxes), and point
model (dashed line).

A family of numerical simulations in the geometry of
Fig. 1 was performed with current wave forms described
by Eq. (7), where y~ = 1/10 and vy = 2.0 X 10' m/s is
achieved after 8.24 p, s. Initially, the simulations begin
with a plasma in a Taylor state [11] at the upstream
volume between the compression cones of Fig. 1. The
mass is also initially distributed so that density isocontours
lie on poloidal magnetic Aux lines with the maximum
density at the magnetic 0 point and fall monotonically
to a minimum value at the separatrix of the CT. Sample
initial magnetic and mass density structures for the time-
dependent simulations are illustrated in Fig. 1. To ease
comparison between the simulations and the point model,
the simulations assume a perfectly conducting plasma,
and the rotation that is induced by the interaction of the
piston current with the CT is suppressed. The trajectories
obtained from simulation for three different values of Pp
are shown superimposed on the point model trajectory
of Eq. (6) in Fig. 2. The trajectory for the simulated
acceleration of a CT is defined by the location of the
magnetic 0 point which is close to the location of the
center of mass.

The case of Pp = 0.025 is illustrative of all cases in
which Po (( 2fcTro/r~. This simulation shows a bounce
at the expected frequency -~2 coo. The case of Po = 25
is illustrative of all cases in which P » 1, whereupon the
piston current pushes the CT to the outer electrode causing
the CT to lose contact with the inner electrode. This
behavior is called "blowby" in Ref. [13]. The simulated
trajectory for such cases shows an acceleration phase at
early times, followed by a constant speed phase after
blowby occurs and the piston current ceases to perform
useful work on the CT. The preferred behavior occurs
when P is within the approximate range of Eq. (5). In
such cases, the trajectory is close to that predicted by the
point model. The Pp = 1.25 trajectory is shown in Fig. 2.

Numerical simulations from different initial conditions
that all have the same values of P behave similarly. For
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FIG. 3. Trajectories from numerical simulation of the P() =
1.25 case with three different sets of initial conditions: high
mass (5 mg), high initial magnetic energy (22.2 kJ) (diamonds);
low mass (0.5 mg), low initial magnetic energy (2.22 kJ) (plus
signs); and high mass, initially uniform mass density, high
initial magnetic energy (boxes). The point model trajectory is
shown for reference (dashed line). Also shown is the piston
current wave form for the low mass, low initial magnetic
energy case.

example, Fig. 3 shows three simulated trajectories each
of which has Pp = 1.25. It is important to note that the
initial distribution of mass in the CT is not crucial. The
piston current wave form that was chosen to accelerate a
low mass (0.5 mg), low initial magnetic energy (2.22 kJ)
CT is also shown in Fig. 3.

This model gives guidance for how to impart to a CT
any nonrelativistic speed. For example, if 1.0 X 106 m/s
is desired in the geometry of Fig. 1, the acceleration time
is 1.65 p, s at constant acceleration. If this time is too short
for practical reasons, a different geometry can be used to
lengthen the time that is required to achieve a particular
final speed. Figure 4 shows an overlay of a mass density
and magnetic field lines from a simulated CT with Pp 1

at t = 0, 3.0, and 6.0 p, s into a constant acceleration dis-
charge in a self-similar converging 8 pair of cones (I ' =
67 nH/m) that are designed to achieve 1.0 X 106 m/s af-
ter 6.5 p, s. Because P is in the proper domain for a robust
compression and acceleration, the desired final speed and
compression ratio f = 10 is achieved. For this simula-
tion, the CT mass and initial magnetic energy are chosen
to be 2 mg and 100 kJ, respectively. As a consequence,
the initial acceleration current is 3.2 MA and it rises to a
peak value of 9.6 MA. Currents and energies of this or-
der are now, or will soon become, available at a variety
of pulsed power laboratories throughout the world. Based
on our simulations, we conjecture that any nonrelativistic
speed can be achieved in the laboratory by a macroscopic
ring that is driven by a sufficiently energetic source as long
as P is maintained in the preferred range of Eq. (5) during
the entire acceleration time.

An obvious question is how to achieve a current wave
form of the type described by Eq. (7). Such a wave
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FIG. 4. Superposition of snapshots of the mass density and
magnetic field lines of a CT at t = 0, 3.0 and 6.0 p, s in a
long converging geometry that is designed to achieve a final
speed of 106 m/s in 6.5 p, s. Three magnetic field lines from
the initial toroid are shown to twist around a mass density
isosurface (blue). The later-time data each have an almost
purely azimuthal field line located upstream of the CT that
represents the piston field. The mass density increases with
time (red is higher density than blue).

form can be approximated by an explosive magnetic
generator [15]. Numerical simulations of CT compression
and acceleration with explosive flux compression current
wave forms show similar behavior to those simulations
discussed herein.
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