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Numerical Evidence of Fast Dynamo Action in a Spherical Shell
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We consider the evolution of a magnetic field in a spherical shell of highly conducting Quid
surrounded by an insulator. We impose an axisymmetric, time-dependent How, having large regions of
chaotic particle paths. This How appears to yield fast dynamo action, in which the field grows on the
fast advective, rather than on the slow diffusive time scale. We demonstrate that the field adjusts to the
Bondi-Gold theorem, according to which the field in the insulators inside and outside the shell cannot
grow on the fast time scale, by becoming increasingly self-contained within the shell.

PACS numbers: 47.65.+a, 47.11.+j, 47.52.+j

The Sun's magnetic field is created by the dynamo
action of Quid motions in the electrically conducting
plasma [1—3], and the field is observed to evolve on the
advective time scale. The natural time scale of dynamo
action, however, is the diffusive time scale, 10 times
longer in the case of the Sun. It is thus of interest to
explore the possibility of dynamo action on the advective
time scale —so-called fast dynamo action [4,5]. In this
work we apply the ideas developed in a previous, plane-
periodic model [6] to a spherical shell model and present
numerical evidence of fast dynamo action for diffusive
time scales up to 100000 times longer than the advective
time scale. It is of particular interest to consider fast
dynamo action in a bounded domain such as a spherical
shell, in view of the Bondi-Gold theorem [7], stating that
the field in the insulators inside and outside the spherical
shell cannot be amplified on the fast advective time scale.
We consider the structure of the field and demonstrate
that as the magnetic Reynolds number measuring the ratio
of the time scales is increased, the structure becomes
increasingly fine, and increasingly contained within the
spherical shell.

The equation governing all dynamo action, slow and
fast, is the induction equation for the magnetic field B:

—B = V x (u x B) + R 'V~B,
Bt

here nondimensionalized in such a way that the advective
time scale is order 1, and the diffusive time scale is order
R . For the kinematic problem considered here, the quid
How u is prescribed. The distinction between a slow and
a fast dynamo then lies in the behavior of the growth
rate of B as the magnetic Reynolds number R tends
to infinity: If the growth rate tends to zero the dynamo
is slow, whereas if it tends to some nonzero value the
dynamo is fast. In other words, a slow dynamo does not

amplify the field on the advective time scale, whereas a
fast dynamo does.

It has been demonstrated [8,9] that in order to yield
a fast dynamo, the How u must have chaotic particle
paths. This is readily understandable in terms of the
frozen Aux theorem, according to which in the limit
R ~ the Quid How will tend to advect the field as
if it were a material line, frozen into the Quid. Since
chaotic Aows are very efficient at stretching material lines,
they are thus also very efficient at stretching and thereby
amplifying magnetic field lines, although one must be sure
that the folding which inevitably follows the stretching
is constructive [10,11]. Chaotic flows are unfortunately
not very amenable to analytic solutions. For this reason,
much work in fast dynamo theory has focused on various
related problems. For example, Aows having singularities
in the velocity [12] and in the vorticity [13] have been
considered, but unfortunately the resulting fast dynamo
action seems to depend crucially on these singularities.
The exactly diffusionless limit R —= ~ has also been
considered [14], but again there is no formal proof that
the limit R —= ~ is the same as R ~. Finally, models
with a stochastic diffusion term have been considered [15].

In this work we present a direct numerical solution
of the induction equation, with the proper diffusion term
explicitly included. Growing solutions are sought in a

1 3
spherical shell lying between r; =

2 and r, = 2, with
the regions r ( r; and r ) r, taken to be source-free
insulators. For the How u we take

u = V x [r 'f(r, t) sinO cosO e~] + rto(r, t) sinO e~ .

As in the previous model [6] which forms the basis of
this work, taking u to be axisymmetric enables us to
focus separately on different azimuthal modes exp(imP)
of the field B. Cowling's theorem [16] disallows only
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the possibility of an axisymmetric flow generating an
axisymmetric field. Only m = 0 is thus excluded a priori.
For an axisymmetric flow to have chaotic particle paths, it
must be time dependent. We thus take

f(r, t) = (r —2) (r —z)/2sin[4vrr + sin(vr/4t)],

cu(r, t) = 2sin[4~r + sin(~/4t)].
1 3The parabolic envelope (r —2) (r —2) in f enforces the

appropriate boundary condition of no normal flow at the
inner and outer boundaries of the spherical shell. The
sin[47rr + sin(vr/4t)] term then represents four circula-
tion cells, as shown in Fig. 1(a), with the sin(vr/4t) time
dependent shaking them back and forth in r, with a period
T = 8. As shown in Fig. 1(b), this flow has a very large
region of chaotic particle paths.

For this particular equatorial symmetry of the flow,
the field separates into distinct dipolar and quadrupolar
symmetries. Thus, having decomposed the field as

B = V X (gr") + V X V X (hr"),

FIG. l. (a) Instantaneous streamlines, at t = 0 modulo T, of
the (low u = V X [r 'f(r, t) sing cosg e~] in the meridional
plane. (b) Poincare section of the (low u . Points are plotted
at t = 0 modulo T.

we then expand g and h as

N

g = P g„(r)P„,(cosO) exp(im@),
n=l

N

h = g h„(r)P,(cosO) exp(imP),

where for the dipolar symmetry n& = 2n + m —1, n2 =
2n + m —2. Because of the particularly simple angular
structure of the flow, the angular modes then couple
only to adjacent models, that is, g„couples only to
itself, g„],h„&,and h„,and similarly h couples only
to itself, h„~,g„,and g„+~. If we then finite difference
g„(r)and h„(r), the radial grid points will also couple
only to adjacent grid points. One can thus run the code
reasonably efficiently even at very high truncations. It
has been shown [17] that the field will exhibit structures
as fine as R '/, as a result of a simple balance between
advection and diffusion within these fine structures. For
R = 10~ one should thus expect structures as fine as
O(1/300). The largest truncation used in this work is
N = 512 angular modes times 1000 radial grid points
and appears to be sufficient to resolve these structures.
Finally, to test the code, at low R, and thus low
truncations, one can benchmark it against a more general,
but consequently less efficient code [18].

Starting the code with a random (divergence-free)
initial field, it was found that after a dozen or so flow
periods T the eigensolutions had established themselves,
and thereafter the entire solution grew by the same factor
over each successive period T. The average growth
rate over a period is shown in Fig. 2, for the dipolar
m = 1 mode. It is very well fit by the curve 0.21—
0.12(1000/R )'t, which would suggest that for large
R it levels off to 0.21. (For comparison, the largest
Lyapunov exponent is about 0.15.) The increase in the
growth rates between R = 40000 and 100000 is less
than 4%. It is this leveling off of the growth rate that
provides evidence of fast dynamo action. It must be
emphasized, though, that this numerical evidence is not
proof; it is conceivable that for even larger R the growth
rate would decrease to zero again. By their very nature,
numerical solutions will always fall somewhat short of
infinity. Nevertheless, in view of this smooth leveling
off, it seems likely that this behavior will continue for
even larger R

It is curious, though, that one must go to R
105 before the growth rate levels off; in the previous
plane-periodic model [6] the growth rates leveled off at
R = 102 to 103. We believe the reason may be the
following: In this spherical model the azimuthal wave
number m is restricted to integer values, whereas in the
plane-periodic model the corresponding wave number k is
unrestricted. The extra freedom of being able to optimize
k may explain why the growth rates leveled off sooner in
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FIG. 2. The solid line shows the growth rate of the dipolar
m = 1 mode, plotted against R on a logarithmic scale. The
dashed line shows the curve 0.21 —0.12(10 00/R )'~2.

the plane-periodic model. Indeed, for most other values
of k it did not level off so soon [19].

Figure 3 shows the structure of the eigensolutions at
t = 0 modulo T for R = 10000 on the left and 40000
on the right. One notes first that the field is closely
aligned with the instantaneous streamlines of the How at
r = 0, shown in Fig. 1(a). As in the plane-periodic case,
it appears to accumulate at the stagnation points and is
then drawn out from there. In both the plane-periodic
and spherical cases, the field generation appears to arise
because of heteroclinic tangling between the stagnation
points. As expected [17], the field exhibits structure
on a very fine scale, consistent with an R '~ scaling.
In the limit R ~ ~ these eigensolutions then tend to
generalized functions, although their growth rates tend to
the constant limit of 0.21.

Aside from being more realistic than the infinite plane-
periodic geometry considered before, the spherical geom-
etry considered here is of particular interest, in view of the
Bondi-Gold theorem noted above, stating that the field in
the insulators inside and outside the spherical shell cannot
be amplified on the fast time scale. This result is again
readily understood in terms of frozen Aux: By the frozen
Aux theorem, field lines will remain with the quid. But
by continuity, quid on the inner and outer surfaces of the
shell will remain there. Therefore, one cannot change the
number of field lines penetrating these surfaces, at least
not on the fast advective time scale, only on the slow dif-
fusive time scale on which the frozen Aux theorem does
not apply.

We have, however, demonstrated that these eigenso-
lutions above do grow on the fast time scale. To be
consistent with the Bondi-Gold theorem then, their struc-
ture must presumably be such that they have essentially
no field lines penetrating the inner and outer surfaces.

FIG. 3. The structure of the field in the particular meridional
plane for which f B@dS = 0. R = 10000 on the left, 40000
on the right. From top to bottom contours focus on the
dominant structures. The'truncations used for the R = 10000
and 40000 runs were, respectively, 256 X 500 and 512 X 1000.
As fine as they are, these structures are thus adequately
resolved.

That this statement is qualitatively true is already appar-
ent in Fig. 3, which slows that 8, is essentially zero on
these surfaces. More quantitatively, consider the "pole
strength" H„—= f„„,~B„~dS, the quantity identified by
the theorem as being fixed in the limit R ~. If
we normalize the field such that the magnetic energy

2 f ~B~ dV = 1, then the inner pole strength H„ is 0.023
for R = 10000, 0.019 for 20000, and 0.014 for 40000.
The outer pole strengths H, are even smaller. As R
tends to infinity, the pole strengths thus tend to zero.

It is in this way that the Bondi-Gold theorem is met for
the case at hand. At any finite R, where the theorem
does not apply rigorously, the eigensolutions do have a
small, finite pole strength, which also grows on the fast
time scale. However, as R increases, this pole strength
decreases, so that at infinite R, where the theorem does
apply rigorously, the pole strength is zero. The field is
then completely contained within the spherical shell and
can thus grow on the fast time scale without violating the
Bondi-Gold theorem.
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