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How Disoriented Chiral Condensates Form: Quenching versus Anneahng
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We demonstrate that fluctuations, their relaxation, and the chiral phase transition are automatically
incorporated in the numerical simulations of the classical equations of motion in the linear o model
when longitudinal and transverse expansions are included. We find that domains of disoriented chiral
condensate with 4—S fm in size can form through a quench while an annealing leads to domains of
smaller sizes. We also demonstrate that quenching cannot be achieved by relaxing a chirally symmetric

system through expansion.

PACS numbers: 25.75.+r, 11.30.Rd, 12.38.Mh, 24.60.Ky

One of the proposed explanations for the Centauro
events [1] in high energy cosmic ray experiments is
the coherent emission of pions from a large domain
of disoriented chiral condensate (DCC) [2]. However,
if the system has to go through an equilibrium phase
transition, quark masses, though much smaller than the
intrinsic QCD scale, prevent DCC domains from reaching
a size larger than 1/T, [3]. As .an alternative, Rajagopal
and Wilczek [4] proposed that a nonequilibrium phase
transition through quenching can generate large DCC
domains. Their numerical simulation indeed observed the
amplification of the long wavelength modes of the pion
fields, but did not shed light on the size of DCC domains.
Similar simulations by Gavin, Gocksch, and Pisarski [5]
are, however, not conclusive about the exact size of
DCC domains, since they only looked at the pion fields
averaged over the transverse dimensions which cannot
reveal domains smaller than the lattice size.

To model a quench, Rajagopal and Wilczek argued
that one can evolve the classical fields according to the
zero temperature equations of motion from a chirally
symmetric initial condition with short correlation lengths.
In this Letter, we shall argue that fluctuations introduced
in the initial configuration actually render the effective
potential to a non-zero-temperature one. The interaction
between the mean fields and the fluctuations as well
as their evolution can be automatically included in the
numerical simulations of the equations of motion. Using
an ensemble averaging technique, we demonstrate the
relaxation of the fluctuations and the occurrence of the
chiral phase transition due to the longitudinal [6] and
transverse expansions which are consistently included in
our study, whereas in earlier studies [4,5] the system only
evolves in an approximately constant [7] but nonzero
temperature effective potential. By choosing different
initial configurations, we study the evolution of the system
in both quenching [4] and annealing [8,9] scenarios.

In the standard linear o- model, the equations of motion
are given by

= A(tj —@ )@ + Hn

(2)

where r = (x2 + y~)'t2 is the radial coordinate, the dot
stands for the derivative with respect to the proper time
r = (t2 —z2)'t~, and o.o and Bo are constants, which we
can vary for different scenarios. We have introduced an
interpolation function,

Rof(r) = exp + 1r J
(3)

to describe the boundary condition. Ro is the radius of the
initially excited region where fluctuations exist and the
mean fields are different from their vacuum expectation
values. Outside this region, the vacuum configuration,
P = (f, 0), is imposed. I' is the thickness of the
transient region. The results presented in this Letter are
obtained with Ro = S fm and I = O.S fm.

To understand the underlying physics in different
scenarios, let us first examine the Hartree approximation
[8] of Eq. (1). Separating @ into the mean fields (@)and

where cb =— (o., m) is a vector in internal space, n = (1,0),
and Hn is an explicit chiral symmetry breaking term due
to finite quark masses. In the following, we shall use A =
19.97, v = 87.4 MeV, and H = (119 MeV)', with which
m = 13S MeVandm = 600MeVatT = 0.

We carry out numerical simulations of Eq. (I) includ-
ing both the longitudinal and transverse expansions. We
assume boost invariance in the longitudinal direction so
that the longitudinal expansion is automatically included.
To consider the transverse expansion, we use a cylindri-
cal boundary condition. The initial P fields are randomly
distributed according to a Gaussian form with the follow-
ing parameters:
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the fiuctuations 6@ around (@), i.e. , P = (@) + 6@, and
taking the average of Eq. (1), we have

y becomes negative, modes below the critical momentum,

(4) = ~( ' —(4)' —3(64~() —(64'))(4) + H

(4)

where (@) = (@;)(@;),6$~~ is the component of the fiuc-
tuation parallel to (P), and 6$& is the orthogonal compo-
nent. As we show below, y is related to the instability
of low momentum modes. Equation (4) implies that the
motion of the mean fields is determined by an effective
potential,

~((4)) =
4

((0)' + 3(64(~) + (64') — ')' —0( ),
(5)

which in the presence of the fluctuations clearly differs
from the zero temperature one. By varying the level of
fluctuations, chiral symmetry can be restored or sponta-
neously broken. The above effective potential is very
generic since no assumption has been made for the Auctu-
ations except that they are only of a classical nature. If the
fiuctuation terms in Eq. (5) are replaced by their counter-
parts in a finite temperature field theory, the well-known
one loop effective potential at finite temperature [10] is
recovered. Therefore, for the mean fields, and as we shall
also show for the fluctuation fields, the classical equations
of motion have already included the effect of fluctuations
present in the effective potential. This might look sorpris-
ing, but can be easily understood in a thermal equilibrium
case. In a finite temperature field theory, the temperature
dependence of the effective potential arises from the on-
shell part of the propagator. Since no contribution from
virtual particles is involved, all thermal corrections at the
one loop level are purely classical.

Neglecting the corrections due to quantum fluctuations
[9,11], the time evolution of (@) and 6$ can be consis-
tently solved through numerical simulations [4,5] of the
classical equations of motion, Eq. (1). Since the fiuctua-
tions can evolve with time according to a given relaxation
mechanism [6,8,9], the time evolution of the field config-
uration obtained from Eq. (1), already includes the effect
of the time dependence of the effective potential. The
use of equations of motion does not ensure that the effec-
tive potential takes its zero temperature form or that chiral
symmetry is spontaneously broken. What matters most is
the initial fluctuation of the system.

When 6 —= (3(6P~~) + (6@~))/6 is large enough, chi-
ral symmetry is restored (approximately, due to H 0 0).
If the explicit chiral symmetry breaking term is neglected,
the phase transition takes place at the critical fluctuation,
6, —= v~/6. For 6 ( 6„the effective potential takes its
minimum value at (@)= (cr„O),where a., depends on 6~.
When the mean fields are displaced from this equilibrium
point to the central lump of the "sombrero" ((P;) —0) and

become unstable, and thus DCC domains can form. Since
the domain size is directly related to the time scale during
which these modes are unstable, it strongly depends on
the initial condition, 62 and (@)of the system.

Let us now consider three different scenarios. (i) In
a quenching scenario, the initial fluctuation is below the
critical value, 6~ ~ 62, and (@;)—0. As the mean fields
roll down from the central lump of the potential, pion
modes below k,. will be amplified. In the meantime, as the
system cools down and the fluctuation decreases via, e.g. ,
an expansion, the effective potential will also change and
the equilibrium point of the potential (a.,„O)moves toward
the zero temperature value (f, O). This will increase
the roll-down time and lead to a larger domain size. (ii)
On the other hand, if we initially choose (P) to be very
close to the equilibrium point of the effective potential,
(o.„O),the mean fields and the effective potential may
both evolve so that the system always oscillates around the
equilibrium position. We refer to this scenario as a cold
annealing since the system starts with an effective potential
in which chiral symmetry is spontaneously broken. (iii)
What we shall call a hot annealing scenario is similar
to the cold annealing except that the initial fluctuation is
much larger than the critical value, 6 » 6, , so that chiral
symmetry is almost restored. In both annealing cases,
the mean fields can evolve almost synchronously with the
effective potential so that the system only oscillates around
the equilibrium point, i.e. , (P) = v —3(6@~~) —(6P~).
One can then expect that the low momentum modes are
less amplified and that'the domain size is smaller than in
the quenching case.

For the three scenarios we consider here, we take (i)6„=62 = v2/6, with which the system is about to go
through a phase transition. The initial field configuration
is set to crz ——0 for a quenching case. (ii) For a cold
annealing case, we take a.p = o-,, = 44 MeV, in order to
have an equilibrium initial configuration with the given
fiuctuation. (iii) For a hot annealing case, we take 60 ——

v2/4 and ao = o.„=-20 MeV.
We define a correlation function C(r, r) as

where the sum is taken over those grid points i and j such
that the distance between i and j is r. In Fig. 1(a), we
show the time evolution of the correlation function for the
quenching case. Throughout our calculations, we take the
initial time ~p = 1 fm and a lattice spacing a = 0.25 fm.
In our numerical simulations, we have used the two-
step Lax Wendroff method, a version of the leap frog
method [12]. We have used an initial correlation length4„„=0.5 fm. Usually the lattice spacing a has been
identified to Z,„[4,5]. To include the initial correlation
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FIG. 1. Correlation functions (a) at r = 1 fm (initial state),
3 fm, and 7 fm for the quenching initial condition; (b) for the
quenching, hot and cold annealing scenario at 7- = 7 fm.

FIG. 2. Evolution of (a) g/m2, (T = 0), where the solid
and dashed lines are quenching and hot annealing cases,
respectively, (b) (o.), (6o.2)'~', and (Bvr~)

' for a hot annealing
case. The averages are made over 100 events and within
r ~ 3 fm in both.

and to reduce the finite size effect, we have adopted the
lattice spacing smaller than 8„„,[13]. The initial fields
are therefore uniform within Z„„X4„„squares. Since
domain formation is caused by the amplification of low
momentum modes, the domain size should not be very
sensitive to the value of4„„.We have actually confirmed
this [12]. At r = ro, there is no correlation beyond

We can clearly see that a long range correlation
emerges at later times. Note that the apparent shrinking
of correlation length at 7. = 7 fm is a little misleading.
Since the resultant pion distributions only depend on ~, ,

C(r, r) ( 0 should be regarded as the manifestation of
the correlation as long as C(r, r) 4 0. At r = 7 fm, the
typical correlation length is as long as r —2.5 fm. In
Fig. 1(b), we compare the results of the quenching, hot,
and cold annealing scenarios at 7. = 7 fm. We observe
that quenching gives the largest correlation among the
three cases. We have also checked that changing o-p

to 0 in the hot annealing case does not help much to
create larger domains, since the system has moved to
the equilibrium position before the chiral phase transition
takes place. In other words, a quenching condition can
never be realized through a hot annealing. The situation
does not improve much even if a second order phase
transition is assumed (H = 0), because the expansion
time scale is too short for any long range correlation
to develop. In the quenching case, the expansion of
the system reduces the fluctuation, and as a result, the
evolving effective potential provides a longer roll-down
time for the system to form larger domains. We have,
in fact, checked that for larger ~p cases, where relative
longitudinal expansion is slower, a smaller correlation is
generated [12].

In Figs. 2(a) and 2(b), we show the time evolution of
~/m (T = 0) and that of the average o. field, (o.), and the
average fluctuations, (6o.2)'~ and (Bvr~)'~, respectively.
(6vr2)' and (6~'3)'~ are similar to (67rt)'~ . We have
generated 100 events and averaged over the central region
r ~ 3 fm. In Fig. 2(a), we have taken a very small
initial fluctuation, Bo = v2/16, and o.o = 0 to simulate a
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very strong quenching case for the solid line. For the
dashed line, Bo = 3v2/8, which is much larger than the
critical value, and op = o = 9 MeV have been taken
to simulate a very hot annealing case. We clearly see
that in the quenching case g stays negative longer than
the annealing case and that g becomes negative again
even after it once became positive. This also explains
the large correlation length in the quenching case as
observed in Fig. 1. We note that in a smaller region in
a single event the duration when y is negative can be
even longer due to fluctuation. In Fig. 2(b), we have
used the latter set of Bo and o.a. We see that (6o. )
and (6~~) decrease on the average with time due to the
longitudinal and transverse expansion. On the other hand,
(o.) increases, following the equilibrium position of the
evolving effective potential. In principle, (o.) approaches
its vacuum value, f, as 62 goes to zero. A very
interesting and important point is that (Bo ) and (67r~)
decouple from each other at about 6 = 35 MeV, which
is about the value of the critical fluctuation 6, This
decoupling is nothing but the manifestation of the mass
splitting during the chiral phase transition: the pion mass
becomes smaller and the sigma mass becomes larger.
Obviously, the fluctuations also experience an evolving
effective potential as well as the mean fields.

Finally, to demonstrate domain formation, we show
the contour plot of ~2 in Fig. 3 for one event in our
quenching case as a function of the transverse coordinates
at the initial time v. = 7-p = 1 fm and ~ = 5 fm. We
can clearly see two large domains with opposite signs
in ~2 at 7- = 5 fm in this event, whereas initially there
exists no structure inside the chirally restored region. We
also note an apparent transverse expansion and decreasing
fluctuations in the inner region. The domain formation is
more dramatic for a smaller system [12].

In summary, we have shown that the usual prescription
for a quench actually already includes the effect of
fluctuations. The relaxation of the fluctuations and their
effect on the effective potential are automatically included
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we have demonstrated that such a quenching condition
cannot be achieved by relaxing a system from a chirally
symmetric phase through expansions. We will discuss
elsewhere [12] whether and how a quenching initial state
can be realized in hadronic or nuclear collisions.
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FIG. 3. Contour plot of ~2 field in an event at 7. = 7p = 1 fm
and ~ = 5 fm. A quenching initial condition is used as in
Fig. l. The ~2 field has opposite signs in the two large
domains.

in the evolution of the system which undergoes both
longitudinal and transverse expansions. Mass splitting of
the pion and sigma fields at the classical level during
the chiral phase transition has been clearly demonstrated.
We have also shown in our numerical calculations that
DCC domains of a typical size up to 4—5 fm can
form for realistic parameters in the linear -o- model if
the quenching initial condition is realized. Furthermore,
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