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Can Sigma Models Describe Finite Temperature Chiral Transitions?
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Large-N expansions and computer simulations indicate that the universality class of the finite-
temperature chiral symmetry restoration transition in the 3D Gross-Neveu model is mean-field theory.
This is a counterexample to the standard "sigma model" scenario which predicts the 2D Ising model
universality class. We trace the breakdown of the standard scenario (dimensional reduction and
universality) to the absence of canonical scalar fields in the model. We point out that our results
could be generic for theories with dynamical symmetry breaking, such as quantum chromodynamics.
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When studying the finite-temperature chiral restoration
transition in QCD one is usually guided by the concepts
of dimensional reduction and universality. A compelling
idea, first put forward in Ref. [1] and later elaborated
on in Ref. [2], is that in four-dimensional QCD with

Nf light quarks the physics near the chiral transition
can be described by the three-dimensional o- model with
the same global symmetry. The reasoning behind this
proposal is based on counting the light degrees of freedom
and can be phrased as follows. The transition region is
dominated by the longitudinal and transverse fIuctuations
of the order parameter, cr and ~, which go soft at the
transition temperature. Being bosonic, o and ~ have
zero modes, co„= 0, in their finite-temperature Matsubara
decomposition. These zero modes are the only relevant
degrees of freedom in the scaling region and at low
energies the n 4 0 modes decouple. Therefore, in the
context of a d-dimensional theory, one concludes that the
phase transition is described by an effective scalar theory in
d —1 dimensions. As a consequence, the chiral transition
of four-dimensional QCD, with NI = 2 flavors, should lie
in the same universality class as a three-dimensional O(4)
magnet [1,2]. Similarly, other models, e.g. , four-fermion
theories in d dimensions such as the Gross-Neveu model
[3] with discrete symmetries or the Nambu —Jona-Lasinio
model [4] with continuous chiral symmetries, are expected
to be in the universality class of a (d —1)-dimensional
Ising or Heisenberg magnet, respectively.

It is the purpose of this Letter to discuss the assump-
tions underlying this analysis. As an illustration we study
two examples: a purely bosonic theory, an O(N) o. model
where the ideas of dimensional reduction apply, and a
Gross-Neveu model with composite scalars where they
fail. We discuss the generic features of the models that
might apply to other field theories at finite temperature.
At the end we comment on the implications these two ex-
amples have on QCD.

To illustrate how the idea of dimensional reduction is
realized in scalar theories, we start with the W-component
scalar theory and consider the large-N limit [5] for sim-
plicity. To avoid complications due to Goldstone bosons,
we work in the symmetric phase. At zero temperature, to

leading order in 1/N, the corrections to the propagator are
given by the single tadpole contribution. The susceptibil-
ity, A

= f,(p(x)p(0))„ is the zero-momentum projection
of the correlation function. Since the tadpole is momen-
tum independent, it affects only the susceptibility and not
the wave function renormalization. Defining the critical
curvature p,

2 as the point where the susceptibility diverges
(p, ,' + A f 1/q2 = 0), the expression for the inverse sus-

l
ceptibility can be recast into

= AT,

The n = 0 piece dominates the scaling region. It resem-
bles the zero-temperature expression, Eq. (1), except that
now, the integrals are performed in d —1 dimensions, in-
stead of d. The power counting is the same as before and
it yields the thermal exponent yr = 2/(d —3) which is
the same as the zero temperature y in d —1 dimensions
[6]. It is easy to obtain the other critical exponents; they
show the same type of behavior as y.

1
A 'l l+ A . . . =I' —I', , (I)qq'q'+A ')

where f = f d"q/(2~)", and we absorb the combinato-
rial factor in A. The extraction of the critical index y
reduces to counting powers of the infrared (IR) singulari-
ties on the left-hand side of Eq. (1). Above four dimen-
sions, both terms are IR finite and the scaling is mean
field (y = 1). Below four dimensions the second term
in Eq. (1) dominates the scaling region —the integral di-
verges as g / . This gives the zero-temperature sus-
ceptibility exponent y = 2/(d —2) [5].

At finite temperature, apart from the replacement of
the frequency integral with the Matsubara sum, modifica-
tions are minimal [6]. For a given value of p2 we define
the critical temperature T, by p, + AT, +„f. I/(to„, +
q2) = 0, where co„, = 2vrnT, . The momentum integrals
are now performed over d —1 dimensional space. Sepa-
rating the n = 0 mode (coo = 0) from the rest of the sum,
we get the leading singular behavior

l1

q q'(q' + A' ') .&o )

(2)
n@0

0031-9007/95/74(16)/3109(4)$06. 00 1995 The American Physical Society 3109



VOLUME 74, NUMBER 16 PH YS ICAL REVIEW LETTERS 17 APRIL 1995

m +(g/g ) g 2( 2 g2).
Like the scalar example, this form is especially well suited
for extracting critical indices since the problem reduces
again to the counting of the infrared divergences on the
right-hand side [7,8]. The critical indices are defined by
(Pi/t) i =0 —tp, (gi/) ~,=o —m't, Xi =0 —t, etc. Here,
t = g2/g2 —1 is the deviation from the critical coupling.
Since X —(PP), P = v to leading order. Above four
dimensions the integral in Eq. (3) is finite in the limit of
vanishing X and the scaling is mean field.

Below four dimensions, the X ~ 0 limit is singular-
the integral scales as $" 2. Thus, in the chiral limit
t —$d 2, and at the critical point t = 0 away from
the chiral limit, m —X" '. The resulting exponents
are non-Gaussian: P = 1/(d —2) and 6 = d —1. The
remaining exponents are obtained easily: g = 4 —d, y =
1 [7,8] and one can check that they obey hyperscaling.

We now consider the Gross-Neveu model at finite
temperature. We choose to stay between two and four
dimensions to emphasize how zero-temperature power-
law scaling changes at finite temperature. The gap
equation is now modified to

(3)

Z = m+ 4Tg'g co„+ q2 +
where cu„= (2n + 1)AT For g ) g, t.he critical tem-
perature is determined by 1 = 4T,g g„ f 1/(co2„+ q2),
where cu„, = (2n + 1)AT, . This expression defines a
critical line in the (g, T) plane. For every coupling there
exists a critical temperature beyond which the symmetry
is restored. Conversely, for a fixed temperature there is
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To illustrate how compositeness affects the physics
near the phase transition, we analyze the problem of chiral
symmetry restoration in a Gross-Neveu model given by
the Lagrangian L = i/t(ip + m + go.)p —

2 cr2, where
notation is the Euclidean transcription of the standard one
[3]. Besides being an interesting theoretical model, it is
also believed that, when properly extended to incorporate
continuous chiral symmetry, four-fermion models are
more realistic as effective theories of QCD than the
linear sigma model, especially at scales where quark
substructure is important. When fermions are integrated
out of the Gross-Neveu model, the Ising symmetry cr
—cr of the effective action becomes manifest. If the
dimensional reduction + universality arguments hold
[1], the finite-temperature transition of the d-dimensional
model would lie in the universality class of the (d —1)-
dimensional Ising model. In the remainder of the Letter
we explain how and why this argument fails.

First, we start with the zero-temperature gap equation
and corresponding critical exponents. The model can
be treated in the large-N limit. To leading order, the
fermion self-energy X comes from the o. tadpole: X =
m —g (PP). To obtain the scaling properties of the
theory, we define the critical coupling as 1 = 4g2 f I/q2.
Combining this definition with the gap equation leads to

2

a critical coupling, defined by the above expression, cor-
responding to symmetry restoration. At zero temperature,
the symmetry is restored at g = g, . Thus (g = g„T = 0)
is the ultraviolet (UV) fixed point. As the coupling moves
away from g„a higher restoration temperature results.
At infinite coupling the end point (g = ~, T = T,) is the
IR fixed point. The critical line connects the UV and IR
fixed points dividing the (g, T) plane into two parts. [The
equation for the critical line can be brought into a com-
pact form by combining the expression for T, with the
definition of the zero-temperature critical coupling. This
results in (g2/g2 —1) —T," (g), i.e., T, (g) —X(T = 0).
In this way, for any value of the coupling, the critical tern-
perature remains the same in physical units. ]

Combining the definition of T, with the finite-
temperature gap equation, we can bring it to a form
similar to Eq. (3):

= (1 —T/T, )

+ 4Tg'g
X2 + co„,(co„+ cu„) (T/T, —1)

(~2 + q2) (~2 + q2 + g2)
(5)

The extraction of the critical exponents proceeds along the
same lines as in the zero-temperature case. One difference
relative to Eq. (3) becomes apparent immediately: The
zero modes are absent here and the integrand in Eq. (5)
is regular in the X 0 limit even below four dimensions.
Consequently, the IR divergences are absent from all the
integrals and the scaling properties are those of mean-field

1
theory: p = v = 2, 6 = 3, etc. This is true for any d be-
low or above four. It appears that in this case, contrary
to the scalar example, the effect of making the temporal
direction finite (1/T) is to regulate the IR behavior and
suppress fluctuations. This is manifest in other thermody-
namic quantities as well. For example, to leading order,
the scalar susceptibility g = B(PP)/Bm is given by

—i 2

( 2+ 2+ g2)2

Once again, because of the absence of the zero mode
(~0 = 7rT), the integral in Eq. (6) is analytic in $, and the
mean-field relation y ' —X2 follows. This is equivalent
to y = 2v = 1. The explicit calculation of the momentum
dependence of the o. propagator [9] yields g = 0.

The scaling laws of the finite-temperature transition ob-
tained above are completely different from the predictions
of Ref. [1]. In fact, even the systematics are opposite. The
regulating character of the temperature drives the lower
dimensional theory towards an effective theory that has
Gaussian critical exponents.

The fermionic model discussed above was first analyzed
in Ref. [9]. Higher order calculations have shown that the
results are not artifacts of the large-N limit [10]. In ad-
dition, it was explained in Ref. [10] how the Ising point
is recovered in four-dimensional Yukawa models beyond
the leading order in I/1V and why this does not happen
in Gross-Neveu models. Lattice simulations of the three-
dimensional model have verified the predictions of the
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large-W expansion at zero temperature, at nonzero tem-
perature, and at nonzero chemical potential [11]. The
results for critical indices have been verified and im-
proved by larger scale simulations enhanced by histogram
methods [12]. We have done additional simulations to
check the finite-temperature results [11] in detail. Lat-
tices of sizes 6 X 30, 6 X 72, 12 && 36, and 12 && 72
were simulated at W = 12 using the hybrid Monte Carlo
algorithm described in Ref. [11]. High statistics runs
(several tens of thousands of trajectories for each cou-
pling) were made on a variety of lattices to guarantee
that the simulations were probing the physical IR modes
at finite temperature. Luckily, our task is to distinguish
mean-field exponents from those of the two-dimensional
Ising model, and, as reviewed in Table I, they are dra-
matically different. We will discuss the exponents 6
and P (defined above) and leave other calculations to a
lengthier presentation. The order parameter o- was mea-
sured over a range of couplings and fits of the form
~ = &(I/g —I/g, )~ were made to determine critical
points and indices. In Fig. 1 we show dlno-, the differ-
ence of the logarithm of o-2, plotted against dint, the dif-
ference of the reduced coupling t = (I/g —I/g, ]/I/g2
for the 6 X 72 and 12 && 72 lattices. Vacuum tunneling
(o. fiipping to —o.) occurs when I/g is chosen too close
to I/g2 on a finite lattice and this effect restricts the range
of t shown in the figure. The data are in excellent agree-

1

ment with mean-field theory where P = 2, and rule out the

Ising model value of ~. Note that the statistical error bars
in the figure are smaller than the plotting symbols them-
selves. Since all lattice sizes give the same estimates of
P while their critical temperatures are quite different, we
are confident that the simulation is probing the true con-
tinuum behavior of the finite-temperature transition and is
not corrupted by a sluggish crossover between symmetric
and asymmetric lattices. Next, we measured the response
of the order parameter at criticality to an external sym-
metry breaking field (bare fermion mass) and obtained 6.
The data are shown in Fig. 2 for lattice sizes 6 ~ 302 and
12 X 362. We found 6 = 3.1(1). The Ising model value
of 6 = 15 is ruled out. In all of these calculations we
carefully visualized the a- field to check for nonuniform
configurations that would violate the mean-field hypothe-
sis [13]. None were found and all the past simulations [11]
and the new ones reported here support the contention that
the large-W results are reliable for this problem.

TABLE I. Critical exponents of the 3D Gross-Neveu and 2D
Ising model.
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FIG. 1. dlno vs dint on 6 X 72 (diamonds) and 12 X 722
(crosses) lattices. The dotted line is the Ising model.

An important feature of the exponents corresponding
to the finite-temperature transition is that they violate
hyperscaling [14]. Usually, hyperscaling violation occurs
above four dimensions and is expressed in terms of
exponent inequalities [14], e.g. , 2P6 —y ~ dv. Strict
inequality is applicable only for d ) 4 and implies
factorization of the correlation functions. In our example
the above inequality goes in the opposite direction and
the breakdown of hyperscaling is not accompanied by the
factorization of Green's functions.

One might be tempted to draw an analogy between
the present problem and the superconducting transition
in BCS systems where the scaling region is very narrow
and, until recently, the observed scaling was believed to
be mean field. There is, however, an essential difference
between the two cases. In superconductors, the origin
of a narrow critical region is the fact that the range of
the interaction scales as the size of Cooper pairs which
dissociate at the transition point. Close to the transition
the size of the Cooper pairs increases, and the range
of interaction becomes progressively longer causing the
shrinking of the scaling region (see, e.g. , Ref. [15]).
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FIG. 2. Order parameter response at criticality plotted against
bare fermion mass on 6 X 302 (diamonds) and 12 X 36'
(crosses) lattices. The dotted line is the Ising model.
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In the zero-temperature Gross-Neveu model, on the
other hand, massless fermions generate long-range forces.
This is manifested through the appearance of noninteger
powers of the gradient of the o- field in the model's
effective action, and power-law, rather than exponential,
correlation functions occur. This is also the main reason
why the universality class of this model is different
from the Ising model. In general, long-range interactions
decrease upper critical dimensions. In that context, as
discussed in detail in Ref. [16], the leading order theory
is described by the Landau-Ginzburg theory modified for
systems with long-range interactions. The non-Gaussian
exponents obtained from Eq. (3) are in fact the mean-
field exponents for a theory with long-range interactions
[16]. Consequently, the scaling region where this "non-
Gaussian" scaling is observed is practically infinite, as
can be seen from the large-X and computer simulations
results [II]: Instead of exhibiting crossover from square
root to linear behavior (since P = 1), the order parameter
vanishes linearly over the entire measured region.

The width of the scaling region is determined by the
modified Ginzburg criterion [15,16] which states that
the Landau-Ginzburg theory breaks down when ~t~" 4 )
1, where d, is the upper critical dimension. In the
Gross-Neveu model d, is determined dynamically and
to leading order d, = d. This is why the models are
renormalizable for all d, 2 ( d ~ 4. Keeping this in

mind, it is clear that the Ginzburg criterion is always
respected in the sense that deviations from this behavior
are never important no matter how close we get to the
critical point since d —d, = 0. Subleading corrections
in I jN might change this balance, but, as argued in
Ref. [10] they are always perturbative, unlike in Yukawa
models, where the existence of an additional fixed point

could lead to nonperturbative effects. When the
temperature is turned on in the Gross-Neveu model, the
long-range interactions are screened and traditional mean-
field scaling sets in. This is the result we observe in our
simulations. Several lattice sizes with large asymmetries
were simulated to challenge these ideas.

In conclusion, the study of the Gross-Neveu model
suggests that arguments invoking dimensional reduction
+ universality must be used with care. Our resultsindicate
that an effective scalar model fails to describe the Gross-
Neveu model at finite temperature. %'e believe that
the reason for this failure in our example is related to
the composite nature of the mesons. Pointlike scalars
cannot adequately describe the physics in the vicinity of
the second transition. The order chiral physical picture
behind this failure observes that both the density and
the size of the loosely bound u- meson increase with
temperature. Close to the restoration temperature the
system is densely populated with overlapping composites.
In other words the fluffiness of the mesons cannot be
ignored —the constituent fermions are essential degrees
of freedom even in the scaling region, right before the
composites dissociate. Similar discussions of the failure
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of effective meson theories in a slightly different context
have been given in Ref. [17].

It is well known that four-fermion models can be used
as effective theories of QCD [18]. In addition to having
the same global symmetries, the mesons in both theories
are composite. Therefore, these models are believed to
have common properties over a wide range of scales where
the quark substructure of the mesons is relevant. Know-
ing this, it would be interesting to see what happens in
two-I]avor QCD [19]: Does it follow the dimensional re-
duction scenario, or the Gross-Neveu behavior? Of course,
these two alternatives do not exhaust all the possibilities
[20], but we believe that the scenario suggested by the
Gross-Neveu model is sufficiently compelling to warrant
further analyses of QCD simulation data.
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