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We have developed a theory of a phase transition under pressure in materials made from fibers.

Using the path integral technique the free energy of the system is calculated.

It is shown that a first

order phase transition takes place and that the behavior of the thermodynamic parameters in the ordered
phase are in accordance with scaling laws. Experimental data for leather agree qualitatively with the

theory.
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A novel material has been developed by exerting high
pressure and moderate temperature on natural leather.
The resulting material is thermoplastic. For this new
phase of leather the name pleather has been coined.

By using common plastic forming techniques it is pos-
sible to make complicated shapes from pleather. With
specially prepared leather, pleather can be used as a
promising medical implanation material. On the other
hand, furniture and packaging material can be made from
pleather, and thus could replace plastics or expensive
leather. It is important to note that pleather is “ecolog-
ically friendly.”

Some of the biochemical [1] and mechanical [2]
properties of pleather, and scanning electron microscope
(SEM) micrographs of the internal structure, have been
published elsewhere [3].

In order to develop the properties of pleather in
a rational way, and to design pleather with desirable
properties, an understanding of the physical mechanism
of the phase transitions in leather is essential. At first
it was thought that there are two phases: leather and
pleather. We now realize that there are three different
phases: leather, compressed leather, and pleather.

In this Letter we will present a description of a theo-
retical model for the transition which takes place between
leather and compressed leather under high pressure. Our
approach is based on a combination of the theory of phase
transitions in liquid crystals [4] with some ideas from the
theory of polymers [5]. This combination allows us to
describe the phase transitions between the leather and the
compressed leather, and to calculate some important ther-
modynamic properties of the system near the phase tran-
sitions.

Leather is made up of about 90% macromolecules of
collagen which combine in fiber bundles of about 5-
10 um diam. The fiber bundles are built with a hierarchic
structure: collagen molecules, microfibrils, fibrils, prim-
itive fibers, and fiber bundles. Here we deal only with
fiber bundles which are called fibers for short, as basic
units.

At low pressure the fibers intermingle in a disordered
way (see Fig. 1), the volume fraction of fibers, ¢, is
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relatively small, and the fibers interact only at a relatively
small number of points. When the pressure is increased the
fiber volume fraction increases and the interaction between
the fibers becomes important. As the fibers have a certain
rigidity and their quasistraight pieces are much longer than
their diameter (which can be clearly seen in Fig. 1), there
will be a tendency for the fibers to align themselves in
parallel straight pieces, instead of the disordered crossings
of fibers in natural leather. This means that between low
and high pressures a phase transition from a disordered to
an ordered state takes place.

If we designate a typical coefficient of elasticity per
unit of length of fiber as 7y, the persistence length
(quasistraight pieces) [, will be of order y/T, where
T is the temperature. The condition, that [, is much
longer than the diameter D of the fibers, can be expressed
as DT/y < 1. It can also be seen from the SEM
micrographs [3] that the typical length of fiber L is much
longer than /,, so LT/y > 1.

The energy of one fiber consists of its elastic energy
and the energy of interaction with other fibers. It fol-
lows from experimental data [2,3] that an ordered phase
appears for quite a large value of the fiber’s volume frac-
tion. In this case repulsive short-range forces between
fibers are dominant. It is obvious also that the interaction

FIG. 1. SEM micrograph of the internal structure of leather.
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between two quasistraight pieces depends on the angle be-
tween them.

In the mean field approximation (MFA) the angular
dependent part of the energy of interaction between one
fiber and the others can then be represented in the form

L
AU, = [ dl UT(D],
0

where

Tc

U@ = 5 | disGrG. (1

Here 5;(I) is the unit tangent vector of the fiber (i) at
a distance [/ from the beginning of the fiber, S(#) is
the average fraction of quasistraight pieces of the fibers
that are directed in the direction 7, and Tcf(s,n)/D is
the angular dependent interaction between two pieces of
fibers.

If we assume the simplest form for the elastic energy
of the fibers (isotropic approximation), the part of the
MFA energy of the system which depends on the local
orientation of the fiber pieces will be

Mwien = 5 i fOL dl{y(‘fj )2 + U(Ei(m}, @

where N is the total number of fibers.
The free energy of the system is

F=%F Tz, 3)

where Z can be expressed as path integral over all the
possible shapes of the fibers,

z =[17[@{3,(1)}exp(—%), @)

and Fy is the part of free energy which does not depend
on the elasticity and shapes of the fibers in the MFA.

In the usual way the path integral (4) may be written in
the form

Z = (Z exp—E,,L)N, 5)

where E, is the eigenvalue of the Schrodinger-like equa-
tion associated with this path integral,
W _ T

= —Viy -
al 2y 34

U(s)
2T

¥ (6)

here § is a unit vector and V2 = 42/06% + tan"' 0 96 +
sin"26 92/d¢? is the angular part of the Laplacian opera-
tor.

In the ordered phase the “depth of the potential well”
(Umax — Umin)/2T is large compared to the ‘kinetic
energy” T/2vy because the phase transition to the ordered
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phase occurs for ¢ ~ 1 [2] and

Y cy lp
o ~ = ~c= > 1
max( ) U ) DT c D ,
while min(U) = 0. On the other hand, in a disordered
phase S(7) = 1/4#7 and U(5) = const. In both cases the
energy spectrum will be discrete and the gap between the
ground state and the first excited state will be about

E1 ‘“E()NT/’)/

As LT/y ~ L/I, > 1, the ground state is dominant,
and we obtain for the free energy per unit volume

Tc
F:FO+§EO’ 7

and, for S(7n),

S@) = oW = ¥2(71). ®)

E, can be obtained by using the variation principle from
which we find that

o [ )
+ % fdﬁ\Iﬂ(E)f(E;fl)‘I’Z(ﬁ)];
(C)]

this is a well known ¥* field Hamiltonian.
The function ¥(s) must be found by minimizing F
under the restriction

de‘Ifz: 1. (10)

This can be done in many ways. Here we will use
the simple approximation, which Onsager used in his
treatment of liquid crystals [4]. In this approximation it
is assumed that W(5) is a narrow peaked function in an
ordered phase:

V() = ¢lals - 5o0)] (@ > 1), (1)

where 5o is the direction of an average orientation of
quasistraight pieces, while in a disordered phase ¥(s5) =
v/1/47r (this means that in a disordered phase o = 0) [6].
The parameter « is found by minimizing F.

The difference between the free energy in ordered and
disordered phases is

Tc? TD
F=——1g—=) -
A 2D3 {g( yc) 1}’ (12
where the specific form of the function g(x) depends on
the behavior of f(5,7) near s = n. If it is assumed that
near § = n the behavior of f(5, 7) is of the form

fepll = G- AT (13)
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[p is a constant O(1)], then in the Onsager approximation
one finds [7]

g(x) = (ax)*/+), (14)
with
(1+v)/v
a = (4up)‘/V<k. + ﬁ) . (15)
14

The numerical coefficients k; and k; are O(1) and depend
on the explicit form of the test function (11).

It is obvious from (12) that for fixed 7 and a specific
value of the fiber fraction

co = T/Tx, (16)

where

T. = 'y/aD,

the material undergoes a first order phase transition from
the disordered to the ordered phase. The ordered phase is
stable for T < T.. This phase transition is from leather to
the ordered state that we call compressed leather.

The order parameter S that describes the ordering in
the orientation of the fibers can be defined as

S = %(3[ din S(i) (i - $0)* — 1). a7

In the ordered phase using (8) with W(r) from (11) one
obtains

3 T 1/(1+v)
S~1-—==1- 3(4ya)*‘/<'*”>(—-> (18)
a T.c
(in the disordered phase S = 0). The difference between
thermodynamic parameters of the ordered and the disor-
dered phases can be obtained as follows:

T v T\?
Q~D31+v<i>’ 19
1 M(i)ymﬂ) @+v)/(1+v)
AC~ 5T e \T ¢ . Qo)
Tczi: 2+ v ( T )”/“*”)}
~ - = 21
AKy ~ 3| ! 2(1 + v)2 \Tuc > @D

where Q is the latent heat, C is the specific heat, K is
the bulk modulus, and A indicates the difference between
ordered and disordered phases. In general, the ordered
phase consists of domains with different fiber orientation
(see Fig. 2), but the energy of the domain boundaries
gives a small contribution to AF.

It should be noted that for large volume fractions
of the collagen fibers the form of their cross sections
changes, and therefore so do the effective diameter and
elasticity. Furthermore, the elasticity of the fiber bundles
and coefficient p in the expression (12) depend on

FIG. 2. SEM micrograph of compressed leather at room
temperature. Pressure: 750 atm.

temperature, so that we must consider 7w = Tu(T,c). If
T is less than T4 (T, is the lowest temperature of
collagen denaturation: T4 ~ 350 K) the inner structure
of the fibers almost does not change and the dependence
T. = T.(T,c) is quite weak. In general, such dependence
does not change the expressions for the free energy
and order parameter, but additional terms appear in the
other thermodynamic quantities. However, as most of the
expressions contain T in a low power they are relatively
insensitive to its variations. It is not anticipated that a
change from the isotropic approximation for the elastic
energy to a more realistic approximation would produce
changes of any significance.

Consider now the compressed leather at some temper-
ature To and co > To/T«. If we increase the temperature
for fixed ¢ = ¢, then at a temperature above

Ty = cTx

a first order phase transition from the ordered to the
disordered phase takes place [see Eq. (12)]. For Ty <
T < Ty this phase will be leather. A more complex
situation appears for 7 > T(). In this case the partial
denaturation (or “melting”) of collagen takes place and
for high enough temperature the dependence (T, ¢) may
be complex and, besides that, the nature of the contact
between fibers may change [8]. For such temperatures
the disordered phase will be pleather and the theoretical
consideration for this phase transition must be essentially
revised. (A detailed theory for pleather will be published
in a forthcoming article.)

The MFA is the most important approximation in
our theory but it is a reasonable one because, first,
each quasistraight piece of a fiber interacts with a large
number of neighbors [nneighy ~ ¢(l,/D)* (1 — S) ~
/M) (1, /D)@H3/(+Y) 1], and therefore fluctua-
tions of the concentration of fibers are irrelevant; second,
the phase transition is strong first order (S ~ 1) and so
fluctuations of the order parameter are small.
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The low pressure and high pressure phases can be
seen in photographs in Fig. 1 and Fig. 2, respectively.
In a qualitative way the transition from a disordered
phase (leather) to an ordered phase (compressed leather)
is clearly seen. At room temperature and v between 107!
and 1 (in the Onsager approximation » = 0.5 [4]) the
critical volume fraction of fibers ¢. = aTD/y ~ aD/l, ~
1, which agree qualitatively with experimental data [2].

The above mentioned arguments show that this theory
is able to give a reasonable description of the phase
transitions in real leather under high pressure. However,
our assumption that the persistence length of fiber is much
bigger than the diameter, while the typical length of a
fiber is much longer than the persistence length, and our
concrete choice of the form of the angular dependent
interaction between fibers are general enough to apply
the theory to a whole class of compressed materials made
from other biological or man-made fibers.

The theory gives us an explicit prediction for the be-
havior of the thermodynamic properties. For example,
sensitivity of the transition to a uniaxial stress [8] and
temperature and volume fraction dependence of the ther-
modynamic properties can be tested by experiment.
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FIG. 1. SEM micrograph of the internal structure of leather.



FIG. 2. SEM micrograph of compressed leather at room
temperature. Pressure: 750 atm.



